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Artificial Neural Network
for Composite Hardness Modeling of Cu/S1 Systems
Fabricated Using Various Electrodeposition Parameters
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Abstract —Copper coatings are produced on silicon wafer by
electrodeposition (ED) for various cathode current densities. The
resulting composite systems consist of 10 pm monolayered
copper films electrodeposited from sulphate bath on Si wafers
with sputtered layers of Cr/Au. Hardness measurements were
performed to evaluate properties of the composites. The
composite hardness (H.) was characterized using Vickers
microindentation test. Then, an artificial neural network (ANN)
model was used to study the relationship between the parameters
of metallic composite and their hardness. Two experimental
values: applied load during indentation test and current density
during the ED process were used as the inputs to the neural
network. Finally, the results of the composite hardness
(experimental and predicted) were used to estimate the film
hardness (Hy) of copper for each variations of the current density.
This article shows that ANN is an useful tool in modeling
composite hardness change with variation of experimental
parameters predicting hardness change of composite Si/Cu with
average error of 6 %. Using created ANN model it is possible to
predict microhardness of Cu film for current density or
indentation load for which we do not have experimental data.

I. INTRODUCTION

Artificial neural network (ANN) is a numerical model
designed to simulate information processing of a human
brain. They are used in complex non-linear systems using
the preexisting empirical data to learn about the system. As
such ANNs are used for assessment, prediction, decision
making and diagnostics [1,2]. The neural network consists
of simple processors, called neurons. Each neuron has
inputs and generates output signals that are sent to other
neurons in the network as inputs via the interconnections.
ANN approach is used in many fields of chemical and
material engineering such as: prediction of yield strength,
tensile strength and elongation of cast alloys [3], for
estimation on of the deposition rate of copper-tin during
electroplating, hardness predictions of nickle-CBN
composites [2], evaluating the change of wood hardness
during heat treatment [4], etc.
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Electrodeposited copper films are used in fabrication
of micro-electro-mechanical (MEMS) devices for a wide
range of applications [5]. Mechanical properties of
electrodeposited copper films on silicon substrates in
electronic devices heavily influence the lifetime of the
devices [6]. As such it is especially important to analyze
the hardness of the composite systems which depends on
several factors, such as the microstructure and hardness of
the film and of the substrate, thickness of the film etc. [7].

Microindentation is one of the best known methods
for the evaluation of mechanical properties of films and
coatings. In cases where the thickness of the film is small,
the substrate hardness affects the hardness of the film, such
a measured hardness is called composite hardness.

Based on experimental measurements, the database
was created. Using that database we created neural network
model that we used to predict composite hardness of our
Cu/Si system. The measurements and predicted values of
composite hardness were used to calculate the hardness of
the copper film.

II. ARTIFICIAL NEURAL NETWORK (ANN)

In this study, a proposed ANN model was designed
using the Matlab Neural Network Toolbox and using a
multi-layer perception (MLP) model for prediction. The
MLP architecture consists of an input layer, one or more
hidden layers, and an output layer [4]. The input layer
consists of two input nodes: applied load during indentation
measurement and applied current density during ED
process. The hidden layer utilizes three neurons, and the
output layer consists of one output node: composite
hardness of the Cu/Si systems.

Hidden Layer Output Layer

Input

Fig. 1. Block diagram of ANN used in this study.
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ANN block diagram used in this study is given in Fig.
1. The hidden layer uses a hyperbolic tangent sigmoid
transfer function and the training algorithm is the
Levenberg-Marquardt backpropagation.

The database-containing 60 indentation hardness
measurements of the fabricated Cu/Si composites was
randomly divided into three groups: 42 data points (70% of
the total data) used for the ANN training process, 9 data
points (15 % of the total data) for validation group, and 9
data points (15 % of all data) for the testing process.

The network performance can be estimated through
the error of deviation between actual and predicted values.
The mean absolute percentage error (MAPE), the mean
square error (MSE) and determination coefficient (R”) were
utilized to evaluate the performance of the ANN. The
errors were calculated using the following formulas:
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where Hc; represent the experimental output, Hcep;

represent the predict output, N represent the total number
of samples and Hc’ represents the mean of predicted
outputs.

I1I. HARDNESS DETERMINATION OF COPPER FILMS
USING THE WORK-OF-INDENTATION MODEL

Mathematical models used to calculate the hardness of
the thin film from the measured composite hardness
depends on the type of composite systems. The composite
hardness model of Korsunsky [8] was chosen and applied
to experimental and prediction data in order to calculate the
copper film hardness. According to this model correlation
between composite hardness H, film hardness Hj and
substrate hardness H; is given as:
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where k is a dimensionless materials parameter related to
the composite response mode to indentation, d is the indent
diagonal and ¢ is the thickness of the film.

Prior deposition process, the substrate hardness was
first determined, experimentally. We used Proporcional

Specimen Resistance (PSR) model [9]. The calculated
hardness of the substrate was 14.65 GPa, measured for the
first 5 load points.

IV. EXPERIMENTAL PROCEDURE

For these experiments substrate of Si wafers (4 inch,
(100) orientation) was chosen and prepared. The wafer was
cut in parts about lecm wide, standard cleaning and drying
procedures. The plating base on the silicon wafers were
sputtered layers of 10 nm Cr and 100 nm Au.

Copper films were electrodeposited from a 100 ml
sulphate bath [6]. Electrochemical deposition was carried
out using direct current galvanostatic mode with the 5
current density values (10, 33.33, 50, 66.67 and 100
mA/cm?). Based on the platting surface, current density,
and duration of deposition process, thickness of copper
deposits was 10 pum.

The mechanical properties of the composite systems
Si/Cr/Au/Cu were characterized using Vickers microhardness
tester "Leitz, Kleinharteprufer DURIMET I" with loads
ranging from 2.4515 N down to 0.04903 N. Indentation was
done at room temperature. The dwell time was 25 s. The
average values of impression diagonals d (in m), were
calculated from several independent measurements on every
specimen for different applied loads, P (in N). The
composite hardness, Hc (in GPa), was calculated using the
formula (6).

He = 0.01324-P )
Topographic examination was done by the metallographic
microscope "Carl Zeiss Epival Interphako".

V. RESULT AND DISCUSSION

In this section, experimental results were compared to
prediction values for composite hardness from the ANN
model as shown in Fig. 2. Large disagreements between
experimental and predicted values were noted for low and
high loads. At low loads, the Vicker's diagonal size is small
and difficult to read. These errors are known as indentation
size errors or load errors and must be included in the
assessment of hardness as correlation coefficients. The
estimated mean absolute square errors for the first two load
points are over 10 %. Another critical area is at the end of
the composite region, when using a load over 1.5 N. Here,
the effect of the substrate hardness becomes significant and
the composite hardness increases. The important factor is
the depth of the penetration of the top of an indenter. The
substrate starts to contribute the measured hardness at the
penetration depth 0.07-0.20 times the coating thickness
[10].

134



14 s L - Training: R=0.98308 Validation: R=0.99217
& L] » @ p o™ 25
G 1.2 L 8.5 0 Data g O Daa
o .y s = Fit
:Iu:i 104 :- ;:_s 2 :.: ¥=T
Sos] & g
R ks £
2064 = -~
k7] L n
=3 e 2
° 0.2 - expgnmental 3 0.5 i 5
a) 0.0 . . . . = pre:ﬁlctuon g 05 1 15 2 25 1 15 2 25
0.0 05 1.0 15 20 25 30 Target Target
Load, p (N)
184 Test: R=0.97843 All: R=0.98179
_ 14 . 4 . 205 O Data ‘ st O Daa %0
& us = Fit ] Fit
Q12 T . * Y=T / = Y=T
I::.”) .'. %2 0 _;",2 O0
¢ g £ &
§osd 8 s o/ £ 6]
< 06 3 ! ° E °
gw- 3 O g 0.5 °
© 02 = experimental 1 15 2 25 05 1 15 2 25
b) W $. prediction Target Target
0‘5 1'0 1‘5 2‘0 2!5 3{0
. Loadioi) Fig. 3.ANN regression for microhardness modeling.
5] , TABLE I
¢ e L @ RESULTS OF THE CRITERIA USED IN PREDICTION COMPOSITE
127 at HARDNESS CHANGE
§ 1.0 :'
B
2% ;: data samples MSE R
£ training 42 9.489¢-3 9.831e-1
g validation 9 1.023¢-2 9.922¢-1
.2 = experimental -
o s testing 9 2.010e-2 9.784e-1
C) 0.0
075 170 175 270 275 3‘0
- oz P Predictive ability of the models was evaluated using
performance indicators (2) and (3): MSE and R* for
g 201 o training, validation and testing data as shown in Table 1.
g . s Ideal values are MSE=0 and R*=1. The plot on Fig.3 shows
g's T 4 a regression between network outputs and network targets.
5 " P If the training were perfect, the network outputs and the
2 targets would be equal. The R-values were found as 0.983
%05 for training, 0.922 for validation and 0.978 for testing.
& = oxerimena With the result above, it is possible to say that the proposed
d) 00— p'ez:jm o, model was well trained and showed an acceptable accuracy
‘ Load, p (N) in predicting the composite hardness change with
& variations of current density and applied load.
.
525 W o
& g et 0" TABLE Il
Tag et RESULTS OF THE FILM HARDNESS CHANGE FOR EXPERIMENTAL AND
g ke PREDICTION VALUES
§is] sample experimental prediction
g o5 i .] Hf K Hf K
o . z::;z:ir:’enmal (rnA/cmZ) (GPa) (GPa)
e oo ’ y : ; ; . 10 0.605 0.133 0.687 0.122
0.0 05 1.0 15 20 25 30
Load, p (N) 33.33 0.739 0.109 0.852 0.099
50 0.852 0.105 0.921 0.110
Fig. 2.Comparasion of composite hardness values ( experimental and 66.67 1.056 0212 0.988 0.204
prediction) depending on the applied indentation load for different 100 1.591 0312 1457 0.386
current density: a) 10 ; b) 33.33; ¢) 50; d) 66.67; €) 100 mA/cn’. - - - -

135



To estimate the film hardness independently of the
substrate Korsunsky model was applied in order to
determine absolute hardness of the films. Fitted results are
shown in Table II. The increase in the hardness of the film
with increasing current density is evident for each sample.
The predicted results of the film hardness and experimental
values are close.

The next step is predicting the data on which the
network was not trained. Three new values of current
density were selected (15, 65 and 85 mA/cm?). The results
of prediction film hardness according ANN model are
given in Table III. In Fig. 4. prediction of composite
hardness for two current densities that are outside the range
of experimental measurement are shown.

TABLE III
RESULTS OF THE FILM HARDNESS CHANGE FOR PREDICTION VALUES

sample Prediction
j H; o
(mA/cm?) | (GPa)
15 0.724 0.116
65 0.895 0.189
85 0.904 0.403
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Fig. 4. Predicted composite hardness according to ANN model for
current densities of 5 and 120 mA/cm?.

It can be seen that predicted results follow experimentally
established dependencies on current density and load values
and are in line with results presented in Fig.2 and Table 2. In
the same way, the system's hardness can be predicted for any
load point that has not been experimentally performed.

VI. CONCLUSION

Composite systems of electrochemically deposited Cu
films on Si (100) substrates were prepared and investigated.

An Artificial Neural Network model was developed
and tested for predicting composite hardness of Cu/Si
systems using total of 60 experimentally obtained data
records. In this article, the focus was on modeling the
effects of current density and indentation load on
composite and film hardness via ANN predictions.

We have shown excellent consistency and good
agreement between ANN predicted results and experimental

measurements. Added advantage is that ANN is constantly
learning improving with each iteration. Predicting the
composite hardness or film hardness over the ANN model is
useful when we want to define the properties of a material in
advance or to evaluate feasibility of a situation not
experimentally performed.

Our future research will focus on more complex ANNs
ideally bypassing the need for any analytic approximations
in determining the thin film hardness.
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