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Abstract 

 

Processing and characterization of PMMA-MXene composites were investigated. γ-

Methacryloxypropyltrimethoxy (MEMO) silane was used to modify the surface of MXenes 

and improve the compatibility between MXenes and the polymer. The FTIR analysis revealed 

the formation of a chemical bond between MXene and MEMO silane, while the XPS analysis 

confirmed the presence of silicon in the functionalized MXene. PMMA composites with non-

functionalized and functionalized MXene were prepared using a solution casting method. 

Tensile tests showed that, compared to neat PMMA, Young’s modulus increased in both 

composites by 22.1% and 27.6%, respectively. As a result of coupling between the PMMA 

matrix and the surface-modified MXenes, the tensile strength also increased by about 37%. In 

addition, optical spectroscopy showed higher absorption for the composite with surface-

modified MXenes and short-lived fluorescence with emission intensity sensitive to the 

crumpling of functionalized MXene nanosheets. 

Graphical_abstract 
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1. Introduction 

MXenes are a growing group of 2D materials with a unique combination of properties. 

MXenes can be synthesized by selective etching of the corresponding MAX phase (top-down) or 

by chemical vapor deposition (bottom-up). MAX phases are a large family of layered transition 

metal carbides or nitrides. They can be represented with the general formula Mn+1AXn (n=1-4), 

where M stands for the transition metal (usually an element from the 3rd to the 5th group of the 

PTE such as Ti, Zr, V, Nb, Ta, or Cr), A for the element from the 13th or the 14th group (the 

most common are Al and Si), and X for C or N [1-4]. MXenes have a similar general formula 

Mn+1XnTz, where M and X have the same meaning, and T represents functional groups attached to 

the MXene surface. It can be seen from the latter formula that there is a missing A atom which 

was selectively etched [5,6]. There are over 30 predicted MXene structures, but only some of 

them have been experimentally confirmed [7,8]. Based on their properties, MXenes can be used 

for different applications such as hydrogen storage, dye absorbents, ion exchange, and 

antibacterial agents. In addition, MXenes can be used as stable water (or some other) dispersions 

or as vacuum-filtered films. 

Poly(methyl methacrylate) (PMMA) is an acrylate derivative and one of the most 

interesting industrial thermoplastic polymers. It is weather-resistant, biocompatible, chemically 

stable, and has good optical transparency from the ultraviolet to the near-infrared regions [9-12]. 

Polymeric waveguides are mostly made of this polymer because of these properties. Moreover, 

PMMA-based composites for a wide range of optical and optoelectronic applications can be 

obtained by embedding optically active media like quantum dots, carbon nanotubes, graphene, 

nanowires, or single crystals [13-15]. However, one of the drawbacks of this polymer is its 

brittleness. To enhance its properties, PMMA can be blended with other polymers, or nano- or 

micro-inorganic fillers can be added to it. The results depend on the type of interaction between 

the polymer chains and the filler [12, 16, 17].  

Until now, there have been some theoretical descriptions of the mechanical properties of 

MXene single flakes [18]. In short, MXene single flakes have excellent mechanical properties, 

very similar to graphene sheets [19], which makes them a good candidate for a load-bearing role in 

composite materials. According to density functional theory, Young’s modulus of the single flake 

Ti3C2Tx MXene is about 0.33 TPa [20]. Since there are a lot of functional groups on the MXene 

flake surface, they can be modified with different kinds of materials such as nano cellulose, 

soybean phospholipid, metals (Pt, Ag, et cetera), or inorganic compounds (Fe2O3, Mn3O4) [21-23] 

to improve or change their properties or just to prevent the oxidation. MXenes can also be 

incorporated into polymers to create composite materials with enhanced mechanical [24], 

electrical [25], or optical [26] properties, even with a small concentration of flakes. MXene 

surface plays a vital role here as well because of its functional groups that can interact with a 

polymer structure. The problem occurs when MXene functional groups and a polymer are not 

compatible, which may lead to MXene agglomeration and, consequently, to the deterioration of 

properties. 

MXenes possess promising electron transport properties because of the high density of 

states at the Fermi level. Thus, they can be considered as materials for various optical 

applications, like light harvesting materials, and as functional mediums in polymer composites in 

optical, electromagnetic interference (EMI) shielding, or sensing applications [27-31]. The optical 

properties of MXenes are influenced by way of their surface termination. One of the possible sites 
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for surface termination is on top of transition metal atoms; the second is between top metal atoms, 

and the third is between stacking X-atoms layers [29, 31].  

The research interest in MXene polymer composites increased over the past few years. It 

can be concluded that the processing method also influences the properties of polymer composites 

with MXene [32-36]. Highly transparent Ti3C2Tx MXene film on flexible PET substrate was 

prepared by Ying at all [34]. The processing by in situ polymerization was also performed with 

very good results, and the hybrid nanocomposite of PMMA with MXene/ZnO nanoparticles with 

improved dielectric properties was obtained [35]. Melt blending proved to be a suitable method 

when working with a thermoplastic polymer matrix, e.g., for preparing thermoplastic 

polyurethane (TPU) nanocomposites with homogeneously dispersed Ti3C2 MXene nanosheets 

[36]. All these methods were developed to achieve composites with high performances.  

Various MXene modifications may lead to better compatibility between the flakes and the 

polymer matrix and suppress the aggregation of MXene nanosheets, as evidenced by the use of 

polyethylene glycol (PEG) [37], dopamine [38], or aniline [39]. There is also a well-described 

method of MXene functionalization with amino silane [40], which can serve as the basis when 

utilizing silanes.  

The idea to incorporate MXenes in PMMA originated from our attempts to produce an 

optically-sensitive transparent thin film. There are only a few studies of PMMA-MXene 

nanocomposites [41], including our previous work [42] and the synthesis of specific MXene 

structures using PMMA as a template [43]. To our knowledge, there were no previous attempts to 

synthesize polymer composites with MXenes functionalized with silane. γ-

Methacryloxypropyltrimethoxy (MEMO) silane was chosen for MXene functionalization because 

of its very similar structure to PMMA, which results in better compatibility and stronger 

interfacial bonding in the composite [40,41].  

In our research, we analyzed the impact of functionalized MXenes on the optical and 

mechanical properties of the PMMA. Two types of composites were prepared: the first one, 

where the MXenes were directly added to PMMA, and the second one, where the MXenes were 

functionalized with MEMO silane before they were added to PMMA. The obtained composites 

were tested in order to determine Young’s modulus and tensile strength and prove that the 

optical properties of MXenes are preserved when added to PMMA. 

 

2. Experimental section 

 

2.1. Materials 

For the preparation of Ti3C2 MXene, concentrated HCl (Fisher Scientific UK) and LiF (325 

mesh powder Alfa Aesar) were used. γ-Methacryloxypropyltrimethoxy (MEMO) silane 

(Dynsasylan MEMO) was used to functionalize MXenes. DMF was purchased from Sigma 

Aldrich. Dimethyl sulfoxide (DMSO) was purchased from Fisher Scientific UK. PMMA pellets 

(Acryrex®, Chi Mei Corporation, Taiwan) were used to prepare the composites.  
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2.2. Preparation of delaminated Ti 3C2 MXene 

Ti3C2 MXene was prepared by etching the Ti3AlC2 MAX phase using LiF/HCl method. The 

powdered MAX phase was gradually added into a mixture of LiF and concentrated HCl. After 24 

hours at 35˚C, the dispersion was rinsed with DI water until pH 5, and the supernatant turned 

black. The centrifuge tube was shaken by hand for 1 min after adding water during the rinsing 

procedure. After the last washing step, sediment was again dispersed in DMF and sonicated for 1 

hour under argon bubbling. Finally, the obtained dispersion was centrifuged for 1 hour at 3000 

rpm, and the supernatant was collected. 

 

2.3. Modification of MXene with MEMO silane 

MEMO silane was first hydrolyzed in 50 ml of water/ethanol solution at room temperature 

for 1 hour, and the pH was adjusted with acetic acid [41].  

MEMO silane functionalized MXene was prepared through a similar method as pure 

MXene. Ti3C2 MAX phase was etched using LiF/HCl method. The powdered MAX phase was 

gradually added into a mixture of LiF and concentrated HCl. After 24 hours at 35˚C, the 

dispersion was rinsed with DI water until pH 5, and the supernatant turned black. The centrifuge 

tube was shaken by hand for 1 min after adding water during the rinsing procedure. The obtained 

sediment was dried for 1 hour at 70˚C and mixed with DMSO for 18 hours in a magnetic stirrer. 

After the mixing, sediment was separated from the excess DMSO by centrifugation. Afterward, it 

was redispersed in deionized water and sonicated for 1 hour under argon bubbling. Finally, the 

obtained dispersion was centrifuged for 1 hour at 3000 rpm, and the supernatant was collected.  

The mass ratio of MEMO silane to MXene was 3:1. Hydrolyzed MEMO silane and MXene 

supernatant were mixed with a magnetic stirrer. The obtained mixture was centrifuged for 10 

minutes at 4000 rpm to sediment unreacted silane. The supernatant was then vacuum filtered to 

get the thin film of functionalized MXene, and used in further synthesis. 

 

2.4. Sample preparation 

Three series of samples were prepared: pure PMMA, PMMA with unmodified MXenes 

(PMMA-MX), and PMMA with MEMO silane-modified MXenes (PMMA-MXS). 

Series 1 - PMMA: 

A pure PMMA matrix was prepared by dissolving the PMMA pellets in dimethylformamide 

(DMF) for 24 hours in a magnetic stirrer. The solution was then poured into Teflon molds and left 

partially covered in the dryer for another 24 hours at 65 °C. 

Series 2 - PMMA-MX: 

The supernatant was used as a solvent for the series. PMMA pellets were put into the 

supernatant and left in the magnetic stirrer for 24 hours. The concentration of MXenes in the 

composite was 1 wt%. The solution was poured into Teflon molds and dried for 24 hours at 50˚C, 

followed by 24 hours in a vacuum drier. 

Series 3 - PMMA-MXS: 

PMMA was dissolved in DMF for 24 hours in a magnetic stirrer. After that, the previously 
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made thin film was measured, chipped, and added to the solution to obtain the concentration of 1 

wt% of the functionalized MXene in PMMA. Next, the solution was treated in an ultrasonic bath 

for several minutes to break down the chips, followed by stirring for another 24 hours. The 

solution was then poured into Teflon molds and left in the oven at 65 ˚C overnight. 

The schematic representation of the experiment is shown in Figure 1. 

 

2.5. Material characterization 

FTIR spectra of functionalized MXene and composites were collected through single-beam 

Fourier-Transfer Infrared Spectroscopy (FTIR) using a Nicolet 6700 spectrometer. 

SEM images were obtained by using FESEM Tescan MIRA 3 XMU electron microscope. 

Tensile testing was performed at room temperature with the Shimadzu EZ-LX universal 

testing instrument equipped with a 5 kN load cell. The machine resolution was ±0.5 % of the 

indicated value (within 1/500 to 1/1 of load cell rated capacity), and crosshead position detection 

accuracy was 0.1%.  The samples (12 mm wide, 60 mm long, and 0.5 mm thick) were tested at a 

3 mm/min speed. All the samples were conditioned at room temperature and in a desiccator for 48 

hours before measurements. Three identical samples were tested for each series.  

XPS analysis of the samples was carried out on the SPECS Systems with XP50M X-ray 

source for Focus 500 and PHOIBOS 100 energy analyzer using a monochromatic Al Kα X-ray 

source (1486.74 eV) at 12.5 kV and 12 mA. All samples were fixed onto an adhesive copper foil 

to provide strong mechanical attachment and good electrical contact. All survey XPS spectra (0–

1300 eV BE) were recorded with a constant pass energy of 40 eV, energy step of 0.5 eV, and 

dwell time of 0.2 s, while high-resolution XPS spectra of the corresponding lines were taken with 

a pass energy of 20 eV, energy step of 0.1 eV and a dwell time of 2 s. 

The optical characteristics of MXenes were measured using a time-resolved laser-induced 

optical spectroscopy system. It is based on Nd-YAG Vibrant OPO (Optical Parametric Oscillator) 

laser as an excitation source. The OPO output is continuously tunable in the range between 320 

nm and 475 nm. The fourth harmonic (266 nm) and the second harmonic (532 nm) outputs are 

also available. The time duration of the laser pulse is about 5 ns, and its repetition rate is 10 Hz. 

The samples’ time-resolved emission spectra were obtained by using the Hamamatsu streak 

camera system equipped with the spectrograph. Absorbance spectra were obtained using the 

Ocean Optics HR2000 spectrometer. The samples were excited by a 12 V, 55 W halogen light 

bulb. 

 

3. Results and discussion 

 

The Fourier transformation infrared spectroscopy (FTIR) was used to confirm the 

functionalization of MXene with MEMO silane (Figure 2). The characteristic broad peak around 

3500 cm
-1

, which corresponds to hydroxyl groups or entrapped water, can be seen in the spectrum 

of unmodified MXene. The disappearance of this peak in the spectrum of modified MXene can be 

attributed to the termination of OH groups by silanol groups of MEMO silane [40, 44].  

FTIR measurements for the composite samples are shown in Figure 3. Characteristic peaks 
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for PMMA occur at 1718 cm
–1

 ν (C = O) and 1430 cm
–1

 ν (C - O). The bands at 2953 cm
-1

 

correspond to the C-H elongation of the methyl group (CH3). The peak at 1136 cm
-1

 corresponds 

to the vibrations of the ester group C – O [44]. The peak at 980 cm
–1

 corresponds to the ester 

bonds, and peaks at 751 and 846 cm
–1

 represent (C - C) stretching [45]. Spectra of series with 

MXene have a new peak that corresponds to Ti–O stretching vibration and shifts to 552 (596)  

cm
-1

 [46]. Also, a new broad feature centered at ∼3100 cm
−1

 is present in these spectra and can 

be attributed to the Ti-OH bond [47]. 

Scanning electron microscopy (SEM) was employed to examine the structure of the 

particles used in the experiment. Both MXenes and MEMO silane functionalized MXenes were 

vacuum filtered to obtain the samples for the microscope. Results are shown in Figure 4. 

At first glance, a compact structure is observed in both cases. It is assumed that nanosheets 

were stacked during vacuum filtration. On the other hand, as shown in Figure 4b, which 

represents functionalized MXenes, the structure is looser and less compact. Since the pH of 

hydrolyzed MEMO silane used in synthesis was 3, this caused the ‘crumpling’ of MXene flakes, 

as reported in [48]. In addition, after functionalization, the silane molecules bonded to the flakes’ 

surface in the perpendicular direction, which also leads to an enlarged spacing between MXene 

layers [48.49] and is, along with the crumpling, represented in Figure 4.  

In order to confirm our assumptions about the improved compatibility between 

functionalized MXenes and PMMA, we analyzed the SEM images of both types of composites, 

which are presented in Figures 4c and 4d, respectively. Figure 4c represents the cross-section of 

the PMMA-MX sample. Clusters of MXene nanoparticles can be observed due to the rigorous 

mixing of the polymer solution. On the other hand, no noticeable agglomeration can be observed 

in the cross-section of the PMMA-MXS sample (Figure 4d). That is, MXene nanoparticles are 

more evenly distributed. 

The representative curves from the tensile test of all three series are shown in Figure 5 and 

summarized in Table 1. 

From the shapes of tensile curves, it can be seen that Young's modulus, calculated as the 

slope of the linear section of the stress-strain curve in the 0.5-2.5 MPa stress range, increases for 

both PMMA-MX and PMMA-MXS. The strain at break, however, is lower for PMMA-MX. This 

can be explained by the incompatibility between the MXene surface and PMMA, which leads to 

MXene flakes serving as stress concentrators and causing micro ruptures during deformation. 

Better bonding between MEMO silane functionalized MXene and PMMA is achieved in the 

PMMA-MXS composite, which results in improved load transfer from the matrix to 

reinforcements. As a result, the strain at break and tensile strength increase for PMMA-MXS, and 

consequently, its toughness improves.  

The average values of mechanical properties determined by tensile tests, along with 

corresponding standard deviations (s.d.), are shown in Table 1. Compared to the results of some 

other MXene-polymer nanocomposites and PMMA nanocomposites with other nanoparticles, our 

materials follow the trend of the increased values of Young’s modulus and tensile strength as 

obtained in [50-52]. Looking at the relative improvement of Young’s modulus, in this work, an 

increase of 22.1% for PMMA-MX and 27.6% for PMMA-MXS were achieved, which is in 

accordance with other studies, e.g., an increase of 38.9% in [50] and 33% in [52]. The increase in 

tensile strength was 9% for PMMA-MX and almost 40% for PMMA-MXS. Compared with other 
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MXene-polymer composites with a similar wt% of filler content, thermoplastic polyurethane 

(PTU) with 1 wt% has a 25% increase in tensile strength [53], while for 0.5 wt% of MXenes in 

Waterborne polyurethane and Ultrahigh molecular weight polyethylene the increase was 25% and 

65%, respectively [53]. For nanocomposites with 1 wt% of graphene oxide in PTU and 5.4 wt% 

in PVA, the increase of tensile strength was 40% and 87%, respectively [54, 55]. In addition, the 

theoretical prediction of the modulus of elasticity can be calculated using Halpin–Tsai's 

micromechanical model leading to the value of 2152 MPa, which is comparable to the values that 

we observed for PMMA-MX and PMMA-MXS samples. 

In order to express the reliability of the results of mechanical testing, standard deviation and 

measurement uncertainty were calculated. Measurement accuracy analysis for tensile strength 

(TS) was performed with the method defined by Klysz [55, 56]. Based on machine accuracy, the 

standard uncertainty for TS was calculated as u(TS)=0.18 MPa [57]. For strain, the standard 

uncertainty was calculated as u(Str)=0.21% [57]. Uncertainty of measurements is a parameter for 

error probability distribution in the context of instrument accuracy's influence.  The uncertainty of 

measurements is lower than the standard deviation, as can be seen from Table 1, so the 

instrument's influence on the error can be considered as low. Actually, both the standard deviation 

and uncertainty of the measurements are considerably influenced by the number of samples in a 

testing procedure [57].  

Survey spectra of MXene and functionalized MXene with MEMO silane are presented in 

Figures 6a and 6b, respectively. The main photoelectron lines of Ti, O, and C constituting 

elements are clearly observed and marked together with their Auger lines. The photoelectron lines 

detected at around 685 eV, 270 eV, and 200 eV belong to F1s, Cl2s, and Cl2p, respectively, 

which originate from the preparation procedure of Ti3C2 MXene using the LiF/HCl method. It 

was found that after functionalization of MXene with MEMO silane (Figure 7b), the additional 

lines that correspond to silicon (Si 2s and Si 2p lines, respectively), which are marked with 

arrows, were observed at about 154 eV and 102 eV. The region of Si 2p recorded in better 

resolution is presented in Figure 6c, confirming the successful functionalization of MXene with 

MEMO silane. 

Absorbance spectra of PMMA, PMMA-MX, and PMMA-MXS are shown in Figure 7. Due 

to the low signal levels in UV and IR regions, corresponding parts of measured spectra are very 

noisy. Therefore, the truncated wavelength range is presented in Figure 7 of spectra that were 

measured originally in the range between 300 nm and 1100 nm. Absorbance spectra of MXene 

samples have similar shapes as absorbance spectra obtained by Maleski et al.[58], where the 

spectrum of MXene on the sapphire surface was presented. In the 300-400 nm range, the 

spectrum is with a lot of noise because of the dispersion of MXenes in PMMA and some signal 

attenuation. It can be seen that functionalized MXene in PMMA shows higher absorbance in the 

800 nm region, similarly to [58], while for pure MXene, absorbance in this region is lower. The 

absorbance of PMMA is almost flat in the entire region. The absorption peak at 800 nm observed 

in PMMA-MXS is ascribed to the inherent out-plane interband transitions [58].  

To show the changes in the optical appearance of the composites, we photographed them on 

a piece of paper, along with neat PMMA, so they could be observed together and compared. The 

resulting image is shown in Figure 8. 

Emission intensity (integrated-in-time) of time-resolved optical spectra of PMMA, MXene 

in PMMA, and MEMO silane functionalized MXene in PMMA using the 266 nm excitation are 
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shown in Figure 9. The very strong peak at 532 nm actually corresponds to spectrometer 

diffraction grating second-order “ghost” of laser excitation at 266 nm. Because of their relatively 

small absorption, as MXene materials have moderate quantum yield (8.9% in Desai et al.[59]), 

they are also characterized by small fluorescence intensity. As shown in [39], MXene materials 

have wideband fluorescence emission in the 400-600 nm range. Regardless, the emission peak of 

PMMA-MX is the highest and slightly red-shifted to higher wavelengths. However, the peak of 

PMMA-MXS again blue shifts and appears at nearly the same wavelength as in the spectrum of 

neat PMMA. This influence of silane modification was already observed in our earlier work [42] 

and can be attributed to the silane modification influencing a better spatial organization of 

modified MXenes in the polymer matrix. The MXene fluorescence spectra have shapes very 

similar to spectral shapes presented in Mittal et al.[59], where MXene nanosheets were used for 

selective and sensitive fluorescence detection of Ag
+
 and Mn

2+
 ions. In this research, the 

disturbance of MXene nanosheets with the embedding of these ions also occurred. As shown in 

Figure 10, which represents streak images of time-resolved spectra of PMMA, PMMA-MX, and 

PMMA-MXS, MXene fluorescence is very short-lived. It lasts only as long as the laser pulse 

lasts. Therefore, with the laser excitation duration of 5 ns and the repetition rate of 10 Hz, we 

obtained relatively small intensities of MXene fluorescence compared to [59], where continuous 

excitation was used.   

Presented results suggest that the fluorescence emission is sensitive to the surface 

modification of MXene and the crumpling of MXene nanosheets. This results in fluorescence 

quenching, that is, the decreasing of the fluorescence intensity in PMMA-MXS that can be 

associated with the MXene-silane bonding. The broad absorption properties of MXenes in the 

400-1200 nm range and their intrinsic fluorescence quenching ability make them a promising 

material as a quencher in fluorescence resonance energy transfer (FRET) [60, 61]. Thus, our 

PMMA-MXS thin film can potentially be used as a biosensing element in fluorometric assays. 

4. Conclusion 

A new type of MXene-based PMMA composites with improved toughness was developed 

via a simple solution casting method. To improve the bonding between the reinforcement and the 

polymer matrix, MXenes were functionalized with MEMO silane. Composites with unmodified 

and functionalized MXenes were processed, and structural, optical, and mechanical properties 

were investigated and analyzed in order to pave the way for understanding the significance of 

MEMO silane addition to the MXenes. Functionalization was confirmed with the comparative 

FTIR analysis of neat and functionalized MXenes and the XPS survey spectra. SEM images and 

tensile tests confirmed improved compatibility of functionalized MXenes with PMMA, as higher 

tensile strength, strain at break, and modulus of elasticity were obtained in PMMA-MXS. Optical 

characterization of composites revealed that functionalized MXenes in PMMA showed higher 

absorption in some parts of the visible spectrum. The silane modification influences a better 

spatial organization of modified MXenes in the PMMA matrix, resulting in better fluorescence 

quenching and leading to the potential use of PMMA-MXS thin films as enzyme reaction sensors. 

This research helps to disclose some of the properties of this type of nanocomposites that are 

novel and are yet to be fully understood. 
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Figure 1. Schematic representation of the experiment: 1) preparation of PMMA, 2) 

preparation of unmodified MXene in PMMA (PMMA-MX), and 3) preparation of 

MEMO silane-modified MXene in PMMA (PMMA-MXS). 
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Figure 2. FTIR spectra of MEMO silane functionalized MXene and pure MXene. 

 

 
Figure 3. FTIR spectra of PMMA, PMMA-MX and PMMA-MXS. 
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4. SEM images of a) MXenes and b) MEMO silane functionalized MXenes, c) cross-

section of PMMA-MX, d) cross-section of PMMA-MXS and e) schematic representation 

of the pristine Ti3C2Tx flakes reacting with the  

γ-methacryloxypropyltrimethoxy coupling agent. 
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Figure 5. Stress vs. strain diagram for the PMMA, PMMA-MX, and PMMA-MXS. 
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Figure 6. XPS survey spectra of a) MXene and b) MEMO silane functionalized MXene, 

and c) high-resolution XPS spectrum of Si 2p line of MEMO silane functionalized 

MXene. 
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Figure 7. Absorbance spectra of PMMA, PMMA-MX, and PMMA-MXS. 

 

 

 

 
 

Figure 8. The optical transparency of PMMA, PMMA-MX and PMMA-MXS samples. 
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Figure 9. Emission intensity (integrated-in-time) of time-resolved optical spectra of 

PMMA, PMMA-MX, and PMMA-MXS. 

 

 
 

Figure 10. Streak images of time-resolved optical spectra of a) PMMA, b) PMMA-MX, 

and c) PMMA-MXS. 
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Table 1. Average values of Young’s modulus, tensile strength and strain at break, with 

corresponding standard deviations (SD).  

 

Series 

Young’s 

modulus,  

MPa 

SD, 

MPa 

Tensile 

Strength,  

MPa 

SD, 

MPa 

Strain at 

break,  

% 

SD, 

% 

PMMA 1015.22 182.29 21.98 1.48 3.63 0.67 

PMMA-MX 1235.81 192.21 23.96 1.88 2.33 0.41 

PMMA-MXS 1291.75 164.68 30.05 4.06 3.96 0.50 
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