TechnoRep - Faculty of Technology and Metallurgy Repository
University of Belgrade - Faculty of Technology and Metallurgy
    • English
    • Српски
    • Српски (Serbia)
  • English 
    • English
    • Serbian (Cyrillic)
    • Serbian (Latin)
  • Login
View Item 
  •   TechnoRep
  • Tehnološko-metalurški fakultet
  • Radovi istraživača / Researchers’ publications (TMF)
  • View Item
  •   TechnoRep
  • Tehnološko-metalurški fakultet
  • Radovi istraživača / Researchers’ publications (TMF)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

An improved method for thermal stability behavior characterization of silicon carbide/cordierite composite material

Thumbnail
2007
POSARAC.pdf (169.2Kb)
Authors
Pošarac, Milica B.
Dimitrijević, M.
Majstorović, Jelena
Volkov-Husović, Tatjana
Devečerski, Aleksandar
Matović, Branko
Article (Published version)
Metadata
Show full item record
Abstract
In the present work Mg-exchanged zeolit and silicon carbide were used as starting materials for obtaining cordierite/SiC composite ceramics with weight ratio 50:50. Samples were exposed to the water quench test from 950°C, applying various number of thermal cycles (shocks). Level of surface deterioration before and during quenching was monitored by image analysis. Ultrasonic measurements were used as non-destructive quantification of thermal shock damage in refractory specimens. When refractory samples are subjected to the rapid temperature changes crack nucleation and propagation occurs resulting in loss of strength and materials degradation. The formation of cracks decreases the density and elastic properties of material. Therefore measuring these properties can directly monitor the development of thermal shock damage level. Dynamic Young modulus of elasticity and strength degradation were calculated using measured values of ultrasonic velocities obtained by ultrasonic measurements. ...Level of degradation of the samples was monitored before and during testing using Image Pro Plus program for image analysis. The capability of non-destructive test methods such are: ultrasonic velocity technique and image analysis for simple, and reliable non-destructive methods of characterization were presented in this investigation.

Keywords:
ultrasonic velocity / image analysis / refractories / cordierite/SiC composite ceramics / thermal shock resistance
Source:
Metalurgija, 2007, 13, 3, 203-211
Publisher:
  • Savez inženjera metalurgije Srbije, Beograd
Funding / projects:
  • Nanostrukturni neoksidni keramički i karbonski materijali i njihovi kompoziti (RS-142016)

ISSN: 0354-6306

[ Google Scholar ]
Handle
https://hdl.handle.net/21.15107/rcub_technorep_1043
URI
http://TechnoRep.tmf.bg.ac.rs/handle/123456789/1043
Collections
  • Radovi istraživača / Researchers’ publications (TMF)
Institution/Community
Tehnološko-metalurški fakultet
TY  - JOUR
AU  - Pošarac, Milica B.
AU  - Dimitrijević, M.
AU  - Majstorović, Jelena
AU  - Volkov-Husović, Tatjana
AU  - Devečerski, Aleksandar
AU  - Matović, Branko
PY  - 2007
UR  - http://TechnoRep.tmf.bg.ac.rs/handle/123456789/1043
AB  - In the present work Mg-exchanged zeolit and silicon carbide were used as starting materials for obtaining cordierite/SiC composite ceramics with weight ratio 50:50. Samples were exposed to the water quench test from 950°C, applying various number of thermal cycles (shocks). Level of surface deterioration before and during quenching was monitored by image analysis. Ultrasonic measurements were used as non-destructive quantification of thermal shock damage in refractory specimens. When refractory samples are subjected to the rapid temperature changes crack nucleation and propagation occurs resulting in loss of strength and materials degradation. The formation of cracks decreases the density and elastic properties of material. Therefore measuring these properties can directly monitor the development of thermal shock damage level. Dynamic Young modulus of elasticity and strength degradation were calculated using measured values of ultrasonic velocities obtained by ultrasonic measurements. Level of degradation of the samples was monitored before and during testing using Image Pro Plus program for image analysis. The capability of non-destructive test methods such are: ultrasonic velocity technique and image analysis for simple, and reliable non-destructive methods of characterization were presented in this investigation.
PB  - Savez inženjera metalurgije Srbije, Beograd
T2  - Metalurgija
T1  - An improved method for thermal stability behavior characterization of silicon carbide/cordierite composite material
EP  - 211
IS  - 3
SP  - 203
VL  - 13
UR  - https://hdl.handle.net/21.15107/rcub_technorep_1043
ER  - 
@article{
author = "Pošarac, Milica B. and Dimitrijević, M. and Majstorović, Jelena and Volkov-Husović, Tatjana and Devečerski, Aleksandar and Matović, Branko",
year = "2007",
abstract = "In the present work Mg-exchanged zeolit and silicon carbide were used as starting materials for obtaining cordierite/SiC composite ceramics with weight ratio 50:50. Samples were exposed to the water quench test from 950°C, applying various number of thermal cycles (shocks). Level of surface deterioration before and during quenching was monitored by image analysis. Ultrasonic measurements were used as non-destructive quantification of thermal shock damage in refractory specimens. When refractory samples are subjected to the rapid temperature changes crack nucleation and propagation occurs resulting in loss of strength and materials degradation. The formation of cracks decreases the density and elastic properties of material. Therefore measuring these properties can directly monitor the development of thermal shock damage level. Dynamic Young modulus of elasticity and strength degradation were calculated using measured values of ultrasonic velocities obtained by ultrasonic measurements. Level of degradation of the samples was monitored before and during testing using Image Pro Plus program for image analysis. The capability of non-destructive test methods such are: ultrasonic velocity technique and image analysis for simple, and reliable non-destructive methods of characterization were presented in this investigation.",
publisher = "Savez inženjera metalurgije Srbije, Beograd",
journal = "Metalurgija",
title = "An improved method for thermal stability behavior characterization of silicon carbide/cordierite composite material",
pages = "211-203",
number = "3",
volume = "13",
url = "https://hdl.handle.net/21.15107/rcub_technorep_1043"
}
Pošarac, M. B., Dimitrijević, M., Majstorović, J., Volkov-Husović, T., Devečerski, A.,& Matović, B.. (2007). An improved method for thermal stability behavior characterization of silicon carbide/cordierite composite material. in Metalurgija
Savez inženjera metalurgije Srbije, Beograd., 13(3), 203-211.
https://hdl.handle.net/21.15107/rcub_technorep_1043
Pošarac MB, Dimitrijević M, Majstorović J, Volkov-Husović T, Devečerski A, Matović B. An improved method for thermal stability behavior characterization of silicon carbide/cordierite composite material. in Metalurgija. 2007;13(3):203-211.
https://hdl.handle.net/21.15107/rcub_technorep_1043 .
Pošarac, Milica B., Dimitrijević, M., Majstorović, Jelena, Volkov-Husović, Tatjana, Devečerski, Aleksandar, Matović, Branko, "An improved method for thermal stability behavior characterization of silicon carbide/cordierite composite material" in Metalurgija, 13, no. 3 (2007):203-211,
https://hdl.handle.net/21.15107/rcub_technorep_1043 .

DSpace software copyright © 2002-2015  DuraSpace
About TechnoRep | Send Feedback

OpenAIRERCUB
 

 

All of DSpaceInstitutions/communitiesAuthorsTitlesSubjectsThis institutionAuthorsTitlesSubjects

Statistics

View Usage Statistics

DSpace software copyright © 2002-2015  DuraSpace
About TechnoRep | Send Feedback

OpenAIRERCUB