TechnoRep - Faculty of Technology and Metallurgy Repository
University of Belgrade - Faculty of Technology and Metallurgy
    • English
    • Српски
    • Српски (Serbia)
  • English 
    • English
    • Serbian (Cyrillic)
    • Serbian (Latin)
  • Login
View Item 
  •   TechnoRep
  • Tehnološko-metalurški fakultet
  • Radovi istraživača / Researchers’ publications (TMF)
  • View Item
  •   TechnoRep
  • Tehnološko-metalurški fakultet
  • Radovi istraživača / Researchers’ publications (TMF)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Theoretical assessment of calcium arsenates stability:Application in the treatment of arsenic contaminated waste

No Thumbnail
Authors
Raičević, Slavica
Stanić, Vojislav
Kaluđerović-Radoičić, Tatjana
conferenceObject (publishedVersion)
Metadata
Show full item record
Abstract
Several approaches for immobilization of arsenic (As) based on the transformation of its soluble forms (compounds) into highly insoluble arsenate apatite Ca-5(AsO4)(3)OH have been proposed. These immobilization techniques are successfully applied in treatment of industrial waste containing As. Quite the contrary, treatment of soil contaminated with As by apatite amendments, instead of immobilization of this toxic element, increases its mobility and bioavailability. The mechanism underlying these opposite effects still remains elusive. Here, the stability analysis of different calcium arsenates: Ca-5(AsO4)(3)OH, Ca-4(AsO4)(2)(OH)(2), Ca-3(AsO4)(2) Ca5H2(AsO4)(2) and CaHASO(4) was performed, which is based on the calculation of the ion-ion interaction potential (IIIP). It has been demonstrated earlier that HIP, representing the main term of the cohesive energy, is a suitable parameter for assessment of mineral stability. According to the results of this analysis, arsenate apatite with II...IP value of -0.578 Ry represents the most stable chemical form among analyzed compounds. Based on this finding, we proposed a mechanism of formation of arsenate apatite in the presence of hydroxyapatite. This mechanism can explain the suitability of this approach for the treatment of industrial waste and its limitations for in situ treatment of soil and water contaminated with As.

Keywords:
arsenate apatite / calcium arsenates / cohesive energy / stability / waste
Source:
Research Trends in Contemporary Materials Science, 2007, 555, 131-+
Publisher:
  • Trans Tech Publications Ltd, Durnten-Zurich
Funding / projects:
  • info:eu-repo/grantAgreement/MESTD/MPN2006-2010/142050/RS// (RS-142050)

ISSN: 0255-5476

WoS: 000249653700020

[ Google Scholar ]
URI
http://TechnoRep.tmf.bg.ac.rs/handle/123456789/1176
Collections
  • Radovi istraživača / Researchers’ publications (TMF)
Institution/Community
Tehnološko-metalurški fakultet

DSpace software copyright © 2002-2015  DuraSpace
About TechnoRep | Send Feedback

OpenAIRERCUB
 

 

All of DSpaceInstitutions/communitiesAuthorsTitlesSubjectsThis institutionAuthorsTitlesSubjects

Statistics

View Usage Statistics

DSpace software copyright © 2002-2015  DuraSpace
About TechnoRep | Send Feedback

OpenAIRERCUB