TechnoRep - Faculty of Technology and Metallurgy Repository
University of Belgrade - Faculty of Technology and Metallurgy
    • English
    • Српски
    • Српски (Serbia)
  • English 
    • English
    • Serbian (Cyrillic)
    • Serbian (Latin)
  • Login
View Item 
  •   TechnoRep
  • Tehnološko-metalurški fakultet
  • Radovi istraživača / Researchers’ publications (TMF)
  • View Item
  •   TechnoRep
  • Tehnološko-metalurški fakultet
  • Radovi istraživača / Researchers’ publications (TMF)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Novel glycoside of vanillyl alcohol, 4-hydroxy-3-methoxybenzyl-alpha-d-glucopyranoside: study of enzymatic synthesis, in vitro digestion and antioxidant activity

Authorized Users Only
2012
Authors
Veličković, Dušan
Dimitrijević, Aleksandra
Bihelović, Filip
Bezbradica, Dejan
Knežević-Jugović, Zorica
Milosavić, Nenad
Article (Published version)
Metadata
Show full item record
Abstract
Novel glucoside of physiological active vanillyl alcohol was synthesized for the first time using maltase from Saccharomyces cerevisiae as catalyst, and established its structure as 4-hydroxy-3-methoxybenzyl-alpha-d-glucopyranoside. The key reaction factors for this transglucosylation reaction were optimized using response surface methodology and the highest yield so far in maltase catalyzed transglucosylation reaction was obtained. It was found out that optimum temperature of reaction was 37 A degrees C, optimal maltose concentration was 60% (w/v), optimal pH was 6.6, and optimal concentration of vanillyl alcohol was 158 mM. Under these conditions, yield of glucoside was 90 mM with no by product formation. It was shown that this compound posses good antioxidant activity as well as stability in gastrointestinal tract. It was demonstrated that it is hydrolyzed on brush border membrane of enterocytes, so it can serve in protecting gastrointestinal system from oxidation, as well as source... of anticonvulsive drug after the hydrolysis of glucoside on brush border membrane of small intestine.

Keywords:
Vanillyl alcohol / Glucoside / Maltase / Transglucosylation / Anticonvulsive / Antioxidant activity
Source:
Bioprocess and Biosystems Engineering, 2012, 35, 7, 1107-1115
Publisher:
  • Springer, New York
Funding / projects:
  • Reinforcement of the Faculty of Chemistry, University of Belgrade, towards becoming a Center of Excellence in the region of WB for Molecular Biotechnology and Food research (EU-256716)
  • Allergens, antibodies, enzymes and small physiologically important molecules: design, structure, function and relevance (RS-172049)
  • Novel encapsulation and enzyme technologies for designing of new biocatalysts and biologically active compounds targeting enhancement of food quality, safety and competitiveness (RS-46010)

DOI: 10.1007/s00449-012-0695-3

ISSN: 1615-7591

PubMed: 22307809

WoS: 000307514500007

Scopus: 2-s2.0-84865357405
[ Google Scholar ]
13
11
URI
http://TechnoRep.tmf.bg.ac.rs/handle/123456789/2109
Collections
  • Radovi istraživača / Researchers’ publications (TMF)
Institution/Community
Tehnološko-metalurški fakultet
TY  - JOUR
AU  - Veličković, Dušan
AU  - Dimitrijević, Aleksandra
AU  - Bihelović, Filip
AU  - Bezbradica, Dejan
AU  - Knežević-Jugović, Zorica
AU  - Milosavić, Nenad
PY  - 2012
UR  - http://TechnoRep.tmf.bg.ac.rs/handle/123456789/2109
AB  - Novel glucoside of physiological active vanillyl alcohol was synthesized for the first time using maltase from Saccharomyces cerevisiae as catalyst, and established its structure as 4-hydroxy-3-methoxybenzyl-alpha-d-glucopyranoside. The key reaction factors for this transglucosylation reaction were optimized using response surface methodology and the highest yield so far in maltase catalyzed transglucosylation reaction was obtained. It was found out that optimum temperature of reaction was 37 A degrees C, optimal maltose concentration was 60% (w/v), optimal pH was 6.6, and optimal concentration of vanillyl alcohol was 158 mM. Under these conditions, yield of glucoside was 90 mM with no by product formation. It was shown that this compound posses good antioxidant activity as well as stability in gastrointestinal tract. It was demonstrated that it is hydrolyzed on brush border membrane of enterocytes, so it can serve in protecting gastrointestinal system from oxidation, as well as source of anticonvulsive drug after the hydrolysis of glucoside on brush border membrane of small intestine.
PB  - Springer, New York
T2  - Bioprocess and Biosystems Engineering
T1  - Novel glycoside of vanillyl alcohol, 4-hydroxy-3-methoxybenzyl-alpha-d-glucopyranoside: study of enzymatic synthesis, in vitro digestion and antioxidant activity
EP  - 1115
IS  - 7
SP  - 1107
VL  - 35
DO  - 10.1007/s00449-012-0695-3
ER  - 
@article{
author = "Veličković, Dušan and Dimitrijević, Aleksandra and Bihelović, Filip and Bezbradica, Dejan and Knežević-Jugović, Zorica and Milosavić, Nenad",
year = "2012",
abstract = "Novel glucoside of physiological active vanillyl alcohol was synthesized for the first time using maltase from Saccharomyces cerevisiae as catalyst, and established its structure as 4-hydroxy-3-methoxybenzyl-alpha-d-glucopyranoside. The key reaction factors for this transglucosylation reaction were optimized using response surface methodology and the highest yield so far in maltase catalyzed transglucosylation reaction was obtained. It was found out that optimum temperature of reaction was 37 A degrees C, optimal maltose concentration was 60% (w/v), optimal pH was 6.6, and optimal concentration of vanillyl alcohol was 158 mM. Under these conditions, yield of glucoside was 90 mM with no by product formation. It was shown that this compound posses good antioxidant activity as well as stability in gastrointestinal tract. It was demonstrated that it is hydrolyzed on brush border membrane of enterocytes, so it can serve in protecting gastrointestinal system from oxidation, as well as source of anticonvulsive drug after the hydrolysis of glucoside on brush border membrane of small intestine.",
publisher = "Springer, New York",
journal = "Bioprocess and Biosystems Engineering",
title = "Novel glycoside of vanillyl alcohol, 4-hydroxy-3-methoxybenzyl-alpha-d-glucopyranoside: study of enzymatic synthesis, in vitro digestion and antioxidant activity",
pages = "1115-1107",
number = "7",
volume = "35",
doi = "10.1007/s00449-012-0695-3"
}
Veličković, D., Dimitrijević, A., Bihelović, F., Bezbradica, D., Knežević-Jugović, Z.,& Milosavić, N.. (2012). Novel glycoside of vanillyl alcohol, 4-hydroxy-3-methoxybenzyl-alpha-d-glucopyranoside: study of enzymatic synthesis, in vitro digestion and antioxidant activity. in Bioprocess and Biosystems Engineering
Springer, New York., 35(7), 1107-1115.
https://doi.org/10.1007/s00449-012-0695-3
Veličković D, Dimitrijević A, Bihelović F, Bezbradica D, Knežević-Jugović Z, Milosavić N. Novel glycoside of vanillyl alcohol, 4-hydroxy-3-methoxybenzyl-alpha-d-glucopyranoside: study of enzymatic synthesis, in vitro digestion and antioxidant activity. in Bioprocess and Biosystems Engineering. 2012;35(7):1107-1115.
doi:10.1007/s00449-012-0695-3 .
Veličković, Dušan, Dimitrijević, Aleksandra, Bihelović, Filip, Bezbradica, Dejan, Knežević-Jugović, Zorica, Milosavić, Nenad, "Novel glycoside of vanillyl alcohol, 4-hydroxy-3-methoxybenzyl-alpha-d-glucopyranoside: study of enzymatic synthesis, in vitro digestion and antioxidant activity" in Bioprocess and Biosystems Engineering, 35, no. 7 (2012):1107-1115,
https://doi.org/10.1007/s00449-012-0695-3 . .

DSpace software copyright © 2002-2015  DuraSpace
About TechnoRep | Send Feedback

OpenAIRERCUB
 

 

All of DSpaceInstitutions/communitiesAuthorsTitlesSubjectsThis institutionAuthorsTitlesSubjects

Statistics

View Usage Statistics

DSpace software copyright © 2002-2015  DuraSpace
About TechnoRep | Send Feedback

OpenAIRERCUB