TechnoRep - Faculty of Technology and Metallurgy Repository
University of Belgrade - Faculty of Technology and Metallurgy
    • English
    • Српски
    • Српски (Serbia)
  • English 
    • English
    • Serbian (Cyrillic)
    • Serbian (Latin)
  • Login
View Item 
  •   TechnoRep
  • Tehnološko-metalurški fakultet
  • Skup podataka (TMF)
  • View Item
  •   TechnoRep
  • Tehnološko-metalurški fakultet
  • Skup podataka (TMF)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Supplementary materials for the article: Radovanović, F., Nastasović, A., Tomković, T., Vasiljević-Radović, D., Nešić, A., Veličković, S., Onjia, A., 2014. Novel membrane adsorbers incorporating functionalized polyglycidyl methacrylate. Reactive and Functional Polymers 77, 1–10. https://doi.org/10.1016/j.reactfunctpolym.2014.01.007

Thumbnail
2014
1-s2.0-S1381514814000182-mmc1.pdf (356.2Kb)
Authors
Radovanović, Filip
Nastasović, Aleksandra
Tomković, Tanja
Vasiljević-Radović, Dana
Nešić, Aleksandra
Veličković, Sava
Onjia, Antonije
Dataset (Published version)
Metadata
Show full item record
Abstract
Asymmetric polyethersulfone membranes with submicron particles comprising crosslinked glycidyl methacrylate copolymer were prepared by a combination of a traditional immersion precipitation process for making membranes with photopolymerization and crosslinking of functional monomers included in the casting solution. As the concentration of polymerizable monomers increased the original macrovoid structure was replaced by a hybrid morphology with microglobules typical of macroporous methacrylate adsorbers embedded within microporous structure with no significant effects on water permeability. The epoxide groups present in glycidyl methacrylate copolymer were transformed into amine functionalities by ring opening under alkaline conditions. Permeation of Orange G solution at low transmembrane pressures was used to demonstrate suitability of these novel membranes for membrane adsorption.
Keywords:
membrane formation / photoirradiation / membrane adsorber / epoxide functionality / amination
Source:
Reactive & Functional Polymers, 2014
Publisher:
  • Elsevier, Amsterdam
Funding / projects:
  • Advanced technologies for monitoring and environmental protection from chemical pollutants and radiation burden (RS-43009)
  • Micro- Nanosystems and Sensors for Electric Power and Process Industry and Environmental Protection (RS-32008)
  • Synthesis and characterization of novel functional polymers and polymeric nanocomposites (RS-172062)
Note:
  • Related to: https://technorep.tmf.bg.ac.rs/handle/123456789/2836
  • Supplementary material for: https://doi.org/10.1016/j.reactfunctpolym.2014.01.007
Related info:
  • Referenced by
    https://technorep.tmf.bg.ac.rs/handle/123456789/2836
  • Referenced by
    https://doi.org/10.1016/j.reactfunctpolym.2014.01.007

ISSN: 1381-5148

[ Google Scholar ]
Handle
https://hdl.handle.net/21.15107/rcub_dais_4728
URI
http://TechnoRep.tmf.bg.ac.rs/handle/123456789/2577
Collections
  • Skup podataka (TMF)
Institution/Community
Tehnološko-metalurški fakultet
TY  - DATA
AU  - Radovanović, Filip
AU  - Nastasović, Aleksandra
AU  - Tomković, Tanja
AU  - Vasiljević-Radović, Dana
AU  - Nešić, Aleksandra
AU  - Veličković, Sava
AU  - Onjia, Antonije
PY  - 2014
UR  - http://TechnoRep.tmf.bg.ac.rs/handle/123456789/2577
AB  - Asymmetric polyethersulfone membranes with submicron particles comprising crosslinked glycidyl methacrylate copolymer were prepared by a combination of a traditional immersion precipitation process for making membranes with photopolymerization and crosslinking of functional monomers included in the casting solution. As the concentration of polymerizable monomers increased the original macrovoid structure was replaced by a hybrid morphology with microglobules typical of macroporous methacrylate adsorbers embedded within microporous structure with no significant effects on water permeability. The epoxide groups present in glycidyl methacrylate copolymer were transformed into amine functionalities by ring opening under alkaline conditions. Permeation of Orange G solution at low transmembrane pressures was used to demonstrate suitability of these novel membranes for membrane adsorption.
PB  - Elsevier, Amsterdam
T2  - Reactive & Functional Polymers
T1  - Supplementary materials for the article: Radovanović, F., Nastasović, A., Tomković, T., Vasiljević-Radović, D., Nešić, A., Veličković, S., Onjia, A., 2014. Novel membrane adsorbers incorporating functionalized polyglycidyl methacrylate. Reactive and Functional Polymers 77, 1–10. https://doi.org/10.1016/j.reactfunctpolym.2014.01.007
UR  - https://hdl.handle.net/21.15107/rcub_dais_4728
ER  - 
@misc{
author = "Radovanović, Filip and Nastasović, Aleksandra and Tomković, Tanja and Vasiljević-Radović, Dana and Nešić, Aleksandra and Veličković, Sava and Onjia, Antonije",
year = "2014",
abstract = "Asymmetric polyethersulfone membranes with submicron particles comprising crosslinked glycidyl methacrylate copolymer were prepared by a combination of a traditional immersion precipitation process for making membranes with photopolymerization and crosslinking of functional monomers included in the casting solution. As the concentration of polymerizable monomers increased the original macrovoid structure was replaced by a hybrid morphology with microglobules typical of macroporous methacrylate adsorbers embedded within microporous structure with no significant effects on water permeability. The epoxide groups present in glycidyl methacrylate copolymer were transformed into amine functionalities by ring opening under alkaline conditions. Permeation of Orange G solution at low transmembrane pressures was used to demonstrate suitability of these novel membranes for membrane adsorption.",
publisher = "Elsevier, Amsterdam",
journal = "Reactive & Functional Polymers",
title = "Supplementary materials for the article: Radovanović, F., Nastasović, A., Tomković, T., Vasiljević-Radović, D., Nešić, A., Veličković, S., Onjia, A., 2014. Novel membrane adsorbers incorporating functionalized polyglycidyl methacrylate. Reactive and Functional Polymers 77, 1–10. https://doi.org/10.1016/j.reactfunctpolym.2014.01.007",
url = "https://hdl.handle.net/21.15107/rcub_dais_4728"
}
Radovanović, F., Nastasović, A., Tomković, T., Vasiljević-Radović, D., Nešić, A., Veličković, S.,& Onjia, A.. (2014). Supplementary materials for the article: Radovanović, F., Nastasović, A., Tomković, T., Vasiljević-Radović, D., Nešić, A., Veličković, S., Onjia, A., 2014. Novel membrane adsorbers incorporating functionalized polyglycidyl methacrylate. Reactive and Functional Polymers 77, 1–10. https://doi.org/10.1016/j.reactfunctpolym.2014.01.007. in Reactive & Functional Polymers
Elsevier, Amsterdam..
https://hdl.handle.net/21.15107/rcub_dais_4728
Radovanović F, Nastasović A, Tomković T, Vasiljević-Radović D, Nešić A, Veličković S, Onjia A. Supplementary materials for the article: Radovanović, F., Nastasović, A., Tomković, T., Vasiljević-Radović, D., Nešić, A., Veličković, S., Onjia, A., 2014. Novel membrane adsorbers incorporating functionalized polyglycidyl methacrylate. Reactive and Functional Polymers 77, 1–10. https://doi.org/10.1016/j.reactfunctpolym.2014.01.007. in Reactive & Functional Polymers. 2014;.
https://hdl.handle.net/21.15107/rcub_dais_4728 .
Radovanović, Filip, Nastasović, Aleksandra, Tomković, Tanja, Vasiljević-Radović, Dana, Nešić, Aleksandra, Veličković, Sava, Onjia, Antonije, "Supplementary materials for the article: Radovanović, F., Nastasović, A., Tomković, T., Vasiljević-Radović, D., Nešić, A., Veličković, S., Onjia, A., 2014. Novel membrane adsorbers incorporating functionalized polyglycidyl methacrylate. Reactive and Functional Polymers 77, 1–10. https://doi.org/10.1016/j.reactfunctpolym.2014.01.007" in Reactive & Functional Polymers (2014),
https://hdl.handle.net/21.15107/rcub_dais_4728 .

DSpace software copyright © 2002-2015  DuraSpace
About TechnoRep | Send Feedback

OpenAIRERCUB
 

 

All of DSpaceInstitutions/communitiesAuthorsTitlesSubjectsThis institutionAuthorsTitlesSubjects

Statistics

View Usage Statistics

DSpace software copyright © 2002-2015  DuraSpace
About TechnoRep | Send Feedback

OpenAIRERCUB