TechnoRep - Faculty of Technology and Metallurgy Repository
University of Belgrade - Faculty of Technology and Metallurgy
    • English
    • Српски
    • Српски (Serbia)
  • English 
    • English
    • Serbian (Cyrillic)
    • Serbian (Latin)
  • Login
View Item 
  •   TechnoRep
  • Tehnološko-metalurški fakultet
  • Radovi istraživača / Researchers’ publications (TMF)
  • View Item
  •   TechnoRep
  • Tehnološko-metalurški fakultet
  • Radovi istraživača / Researchers’ publications (TMF)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Stimuli-Sensitive Hydrogel Based on N-Isopropylacrylamide and Itaconic Acid for Entrapment and Controlled Release of Candida rugosa Lipase under Mild Conditions

Thumbnail
2014
2825.pdf (2.584Mb)
Authors
Milašinović, Nikola
Knežević-Jugović, Zorica
Milosavljević, Nedeljko
Lučić-Škorić, Marija
Filipović, Jovanka
Kalagasidis Krušić, Melina
Article (Published version)
Metadata
Show full item record
Abstract
Stimuli responsive pH- and temperature-sensitive hydrogel drug delivery systems, as those based on N-isopropylacrylamide (NiPAAm) and itaconic acid (IA), have been attracting much of the attention of the scientific community nowadays, especially in the field of drug release. By adjusting comonomer composition, the matrix is enabled to protect the incorporated protein in the highly acidic environment of upper gastrointestinal tract and deliver it in the neutral or slightly basic region of the lower intestine. The protein/poly(NiPAAm-co-IA) hydrogels were synthetized by free radical crosslinking copolymerization and were characterized concerning their swelling capability, mechanical properties, and morphology. The pore structure and sizes up to 1.90 nm allowed good entrapment of lipase molecules. Model protein, lipase from Candida rugosa, was entrapped within hydrogels upon mild conditions that provided its protection from harmful environmental influences. The efficiency of the lipase en...trapment reached 96.7%, and was dependent on the initial concentration of lipase solution. The swelling of the obtained hydrogels in simulated pH and temperature of gastrointestinal tract, the lipase entrapment efficiency, and its release profiles from hydrogels were investigated as well.

Source:
Biomed Research International, 2014, 2014
Publisher:
  • Hindawi Ltd, London
Funding / projects:
  • Novel encapsulation and enzyme technologies for designing of new biocatalysts and biologically active compounds targeting enhancement of food quality, safety and competitiveness (RS-46010)
  • Synthesis and characterization of novel functional polymers and polymeric nanocomposites (RS-172062)

DOI: 10.1155/2014/364930

ISSN: 2314-6133

PubMed: 24982870

WoS: 000337421700001

Scopus: 2-s2.0-84902147864
[ Google Scholar ]
7
6
URI
http://TechnoRep.tmf.bg.ac.rs/handle/123456789/2828
Collections
  • Radovi istraživača / Researchers’ publications (TMF)
  • Radovi istraživača (Inovacioni centar) / Researchers’ publications (Innovation Centre)
Institution/Community
Tehnološko-metalurški fakultet
TY  - JOUR
AU  - Milašinović, Nikola
AU  - Knežević-Jugović, Zorica
AU  - Milosavljević, Nedeljko
AU  - Lučić-Škorić, Marija
AU  - Filipović, Jovanka
AU  - Kalagasidis Krušić, Melina
PY  - 2014
UR  - http://TechnoRep.tmf.bg.ac.rs/handle/123456789/2828
AB  - Stimuli responsive pH- and temperature-sensitive hydrogel drug delivery systems, as those based on N-isopropylacrylamide (NiPAAm) and itaconic acid (IA), have been attracting much of the attention of the scientific community nowadays, especially in the field of drug release. By adjusting comonomer composition, the matrix is enabled to protect the incorporated protein in the highly acidic environment of upper gastrointestinal tract and deliver it in the neutral or slightly basic region of the lower intestine. The protein/poly(NiPAAm-co-IA) hydrogels were synthetized by free radical crosslinking copolymerization and were characterized concerning their swelling capability, mechanical properties, and morphology. The pore structure and sizes up to 1.90 nm allowed good entrapment of lipase molecules. Model protein, lipase from Candida rugosa, was entrapped within hydrogels upon mild conditions that provided its protection from harmful environmental influences. The efficiency of the lipase entrapment reached 96.7%, and was dependent on the initial concentration of lipase solution. The swelling of the obtained hydrogels in simulated pH and temperature of gastrointestinal tract, the lipase entrapment efficiency, and its release profiles from hydrogels were investigated as well.
PB  - Hindawi Ltd, London
T2  - Biomed Research International
T1  - Stimuli-Sensitive Hydrogel Based on N-Isopropylacrylamide and Itaconic Acid for Entrapment and Controlled Release of Candida rugosa Lipase under Mild Conditions
VL  - 2014
DO  - 10.1155/2014/364930
ER  - 
@article{
author = "Milašinović, Nikola and Knežević-Jugović, Zorica and Milosavljević, Nedeljko and Lučić-Škorić, Marija and Filipović, Jovanka and Kalagasidis Krušić, Melina",
year = "2014",
abstract = "Stimuli responsive pH- and temperature-sensitive hydrogel drug delivery systems, as those based on N-isopropylacrylamide (NiPAAm) and itaconic acid (IA), have been attracting much of the attention of the scientific community nowadays, especially in the field of drug release. By adjusting comonomer composition, the matrix is enabled to protect the incorporated protein in the highly acidic environment of upper gastrointestinal tract and deliver it in the neutral or slightly basic region of the lower intestine. The protein/poly(NiPAAm-co-IA) hydrogels were synthetized by free radical crosslinking copolymerization and were characterized concerning their swelling capability, mechanical properties, and morphology. The pore structure and sizes up to 1.90 nm allowed good entrapment of lipase molecules. Model protein, lipase from Candida rugosa, was entrapped within hydrogels upon mild conditions that provided its protection from harmful environmental influences. The efficiency of the lipase entrapment reached 96.7%, and was dependent on the initial concentration of lipase solution. The swelling of the obtained hydrogels in simulated pH and temperature of gastrointestinal tract, the lipase entrapment efficiency, and its release profiles from hydrogels were investigated as well.",
publisher = "Hindawi Ltd, London",
journal = "Biomed Research International",
title = "Stimuli-Sensitive Hydrogel Based on N-Isopropylacrylamide and Itaconic Acid for Entrapment and Controlled Release of Candida rugosa Lipase under Mild Conditions",
volume = "2014",
doi = "10.1155/2014/364930"
}
Milašinović, N., Knežević-Jugović, Z., Milosavljević, N., Lučić-Škorić, M., Filipović, J.,& Kalagasidis Krušić, M.. (2014). Stimuli-Sensitive Hydrogel Based on N-Isopropylacrylamide and Itaconic Acid for Entrapment and Controlled Release of Candida rugosa Lipase under Mild Conditions. in Biomed Research International
Hindawi Ltd, London., 2014.
https://doi.org/10.1155/2014/364930
Milašinović N, Knežević-Jugović Z, Milosavljević N, Lučić-Škorić M, Filipović J, Kalagasidis Krušić M. Stimuli-Sensitive Hydrogel Based on N-Isopropylacrylamide and Itaconic Acid for Entrapment and Controlled Release of Candida rugosa Lipase under Mild Conditions. in Biomed Research International. 2014;2014.
doi:10.1155/2014/364930 .
Milašinović, Nikola, Knežević-Jugović, Zorica, Milosavljević, Nedeljko, Lučić-Škorić, Marija, Filipović, Jovanka, Kalagasidis Krušić, Melina, "Stimuli-Sensitive Hydrogel Based on N-Isopropylacrylamide and Itaconic Acid for Entrapment and Controlled Release of Candida rugosa Lipase under Mild Conditions" in Biomed Research International, 2014 (2014),
https://doi.org/10.1155/2014/364930 . .

DSpace software copyright © 2002-2015  DuraSpace
About TechnoRep | Send Feedback

OpenAIRERCUB
 

 

All of DSpaceInstitutions/communitiesAuthorsTitlesSubjectsThis institutionAuthorsTitlesSubjects

Statistics

View Usage Statistics

DSpace software copyright © 2002-2015  DuraSpace
About TechnoRep | Send Feedback

OpenAIRERCUB