TechnoRep - Репозиторијум Технолошко-металуршког факултета
Универзитет у Београду, Технолошко-металуршки факултет
    • English
    • Српски
    • Српски (Serbia)
  • Српски (ћирилица) 
    • Енглески
    • Српски (ћирилица)
    • Српски (латиница)
  • Пријава
Преглед записа 
  •   TechnoRep
  • Tehnološko-metalurški fakultet
  • Radovi istraživača / Researchers’ publications (TMF)
  • Преглед записа
  •   TechnoRep
  • Tehnološko-metalurški fakultet
  • Radovi istraživača / Researchers’ publications (TMF)
  • Преглед записа
JavaScript is disabled for your browser. Some features of this site may not work without it.

Modeling of energy consumption and related GHG (greenhouse gas) intensity and emissions in Europe using general regression neural networks

Само за регистроване кориснике
2015
Аутори
Antanasijević, Davor
Pocajt, Viktor
Ristić, Mirjana
Perić-Grujić, Aleksandra
article (publishedVersion)
Метаподаци
Приказ свих података о документу
Апстракт
This paper presents a new approach for the estimation of energy-related GHG (greenhouse gas) emissions at the national level that combines the simplicity of the concept of GHG intensity and the generalization capabilities of ANNs (artificial neural networks). The main objectives of this work includes the determination of the accuracy of a GRNN (general regression neural network) model applied for the prediction of EC (energy consumption) and GHG intensity of energy consumption, utilizing general country statistics as inputs, as well as analysis of the accuracy of energy-related GHG emissions obtained by multiplying the two aforementioned outputs. The models were developed using historical data from the period 2004-2012, for a set of 26 European countries (EU Members). The obtained results demonstrate that the GRNN GHG intensity model provides a more accurate prediction, with the MAPE (mean absolute percentage error) of 4.5%, than tested MLR (multiple linear regression) and second-order... and third-order non-linear MPR (multiple polynomial regression) models. Also, the GRNN EC model has high accuracy (MAPE = 3.6%), and therefore both GRNN models and the proposed approach can be considered as suitable for the calculation of GHG emissions. The energy-related predicted GHG emissions were very similar to the actual GHG emissions of EU Members (MAPE = 6.4%).

Кључне речи:
Artificial neural networks / GRNN (general regression neural network) / Multiple linear regression / Multiple polynomial regression
Извор:
Energy, 2015, 84, 816-824
Издавач:
  • Pergamon-Elsevier Science Ltd, Oxford
Финансирање / пројекти:
  • info:eu-repo/grantAgreement/MESTD/Basic Research (BR or ON)/172007/RS// (RS-172007)

DOI: 10.1016/j.energy.2015.03.060

ISSN: 0360-5442

WoS: 000355035900077

Scopus: 2-s2.0-84928437188
[ Google Scholar ]
URI
http://TechnoRep.tmf.bg.ac.rs/handle/123456789/2987
Колекције
  • Radovi istraživača / Researchers’ publications (TMF)
Институција/група
Tehnološko-metalurški fakultet

DSpace software copyright © 2002-2015  DuraSpace
О репозиторијуму TechnoRep | Пошаљите запажања

OpenAIRERCUB
 

 

Комплетан репозиторијумИнституције/групеАуториНасловиТемеОва институцијаАуториНасловиТеме

Статистика

Преглед статистика

DSpace software copyright © 2002-2015  DuraSpace
О репозиторијуму TechnoRep | Пошаљите запажања

OpenAIRERCUB