TechnoRep - Репозиторијум Технолошко-металуршког факултета
Универзитет у Београду, Технолошко-металуршки факултет
    • English
    • Српски
    • Српски (Serbia)
  • Српски (ћирилица) 
    • Енглески
    • Српски (ћирилица)
    • Српски (латиница)
  • Пријава
Преглед записа 
  •   TechnoRep
  • Tehnološko-metalurški fakultet
  • Radovi istraživača / Researchers’ publications (TMF)
  • Преглед записа
  •   TechnoRep
  • Tehnološko-metalurški fakultet
  • Radovi istraživača / Researchers’ publications (TMF)
  • Преглед записа
JavaScript is disabled for your browser. Some features of this site may not work without it.

Mechanochemically assisted solid-state and citric acid complex syntheses of Cu-doped sodium cobaltite ceramicsh

Само за регистроване кориснике
2015
Аутори
Prsić, S.
Savić, Slavica M.
Branković, Zorica
Vrtnik, S.
Dapčević, Aleksandra
Branković, Goran
Чланак у часопису (Објављена верзија)
Метаподаци
Приказ свих података о документу
Апстракт
In the last decade, the sodium cobaltite ceramic became a promising candidate for potential thermoelectric applications, because of its large thermopower and low resistivity. In this work, polycrystalline samples of NaCo(2-x)CuxO(4) (x = 0, 0.01, 0.03, 0.05) were prepared using mechanochemically assisted solid-state reaction method (MASSR) and the citric acid complex method (CAC). Bulk samples were prepared by pressing into disc-shaped pellets and subsequently subjected to a thermal treatment at 880 degrees C in inert argon atmosphere. Changes in structural and microstructural characteristics of the samples, caused by the substitution of Cu for Co, were characterized using X-ray diffraction (XRD) analysis, and scanning electron microscopy (SEM), respectively. The results of inductively coupled plasma (ICP) analysis showed that the compositions of the final products correspond to gamma-NaCo2O4 and confirmed that desired compound was obtained in both syntheses procedures. The advantages ...and disadvantages of these two syntheses procedures have been observed and discussed: the CAC method enabled obtaining samples with higher density and fine microstructure compared to the MASSR method, thus better thermoelectric properties. The Cu2+ substitution led to the increase in Seebeck coefficient in both synthesis routes. The highest figure of merit of 0.022 at 300 K was observed for the sample doped with 1 mol% Cu, obtained by the CAC method, and it was almost twice higher than in the undoped sample confirming the significant influence of Cu-doping with even small concentrations.

Кључне речи:
Ceramics / Chemical synthesis / Mechanochemical processing / Thermoelectric
Извор:
Journal of Alloys and Compounds, 2015, 640, 480-487
Издавач:
  • Elsevier Science Sa, Lausanne
Финансирање / пројекти:
  • 0-3D наноструктуре за примену у електроници и обновљивим изворима енергије: синтеза, карактеризација и процесирање (RS-45007)

DOI: 10.1016/j.jallcom.2015.04.003

ISSN: 0925-8388

WoS: 000354195600074

Scopus: 2-s2.0-84928019074
[ Google Scholar ]
5
4
URI
http://TechnoRep.tmf.bg.ac.rs/handle/123456789/2992
Колекције
  • Radovi istraživača / Researchers’ publications (TMF)
Институција/група
Tehnološko-metalurški fakultet
TY  - JOUR
AU  - Prsić, S.
AU  - Savić, Slavica M.
AU  - Branković, Zorica
AU  - Vrtnik, S.
AU  - Dapčević, Aleksandra
AU  - Branković, Goran
PY  - 2015
UR  - http://TechnoRep.tmf.bg.ac.rs/handle/123456789/2992
AB  - In the last decade, the sodium cobaltite ceramic became a promising candidate for potential thermoelectric applications, because of its large thermopower and low resistivity. In this work, polycrystalline samples of NaCo(2-x)CuxO(4) (x = 0, 0.01, 0.03, 0.05) were prepared using mechanochemically assisted solid-state reaction method (MASSR) and the citric acid complex method (CAC). Bulk samples were prepared by pressing into disc-shaped pellets and subsequently subjected to a thermal treatment at 880 degrees C in inert argon atmosphere. Changes in structural and microstructural characteristics of the samples, caused by the substitution of Cu for Co, were characterized using X-ray diffraction (XRD) analysis, and scanning electron microscopy (SEM), respectively. The results of inductively coupled plasma (ICP) analysis showed that the compositions of the final products correspond to gamma-NaCo2O4 and confirmed that desired compound was obtained in both syntheses procedures. The advantages and disadvantages of these two syntheses procedures have been observed and discussed: the CAC method enabled obtaining samples with higher density and fine microstructure compared to the MASSR method, thus better thermoelectric properties. The Cu2+ substitution led to the increase in Seebeck coefficient in both synthesis routes. The highest figure of merit of 0.022 at 300 K was observed for the sample doped with 1 mol% Cu, obtained by the CAC method, and it was almost twice higher than in the undoped sample confirming the significant influence of Cu-doping with even small concentrations.
PB  - Elsevier Science Sa, Lausanne
T2  - Journal of Alloys and Compounds
T1  - Mechanochemically assisted solid-state and citric acid complex syntheses of Cu-doped sodium cobaltite ceramicsh
EP  - 487
SP  - 480
VL  - 640
DO  - 10.1016/j.jallcom.2015.04.003
ER  - 
@article{
author = "Prsić, S. and Savić, Slavica M. and Branković, Zorica and Vrtnik, S. and Dapčević, Aleksandra and Branković, Goran",
year = "2015",
abstract = "In the last decade, the sodium cobaltite ceramic became a promising candidate for potential thermoelectric applications, because of its large thermopower and low resistivity. In this work, polycrystalline samples of NaCo(2-x)CuxO(4) (x = 0, 0.01, 0.03, 0.05) were prepared using mechanochemically assisted solid-state reaction method (MASSR) and the citric acid complex method (CAC). Bulk samples were prepared by pressing into disc-shaped pellets and subsequently subjected to a thermal treatment at 880 degrees C in inert argon atmosphere. Changes in structural and microstructural characteristics of the samples, caused by the substitution of Cu for Co, were characterized using X-ray diffraction (XRD) analysis, and scanning electron microscopy (SEM), respectively. The results of inductively coupled plasma (ICP) analysis showed that the compositions of the final products correspond to gamma-NaCo2O4 and confirmed that desired compound was obtained in both syntheses procedures. The advantages and disadvantages of these two syntheses procedures have been observed and discussed: the CAC method enabled obtaining samples with higher density and fine microstructure compared to the MASSR method, thus better thermoelectric properties. The Cu2+ substitution led to the increase in Seebeck coefficient in both synthesis routes. The highest figure of merit of 0.022 at 300 K was observed for the sample doped with 1 mol% Cu, obtained by the CAC method, and it was almost twice higher than in the undoped sample confirming the significant influence of Cu-doping with even small concentrations.",
publisher = "Elsevier Science Sa, Lausanne",
journal = "Journal of Alloys and Compounds",
title = "Mechanochemically assisted solid-state and citric acid complex syntheses of Cu-doped sodium cobaltite ceramicsh",
pages = "487-480",
volume = "640",
doi = "10.1016/j.jallcom.2015.04.003"
}
Prsić, S., Savić, S. M., Branković, Z., Vrtnik, S., Dapčević, A.,& Branković, G.. (2015). Mechanochemically assisted solid-state and citric acid complex syntheses of Cu-doped sodium cobaltite ceramicsh. in Journal of Alloys and Compounds
Elsevier Science Sa, Lausanne., 640, 480-487.
https://doi.org/10.1016/j.jallcom.2015.04.003
Prsić S, Savić SM, Branković Z, Vrtnik S, Dapčević A, Branković G. Mechanochemically assisted solid-state and citric acid complex syntheses of Cu-doped sodium cobaltite ceramicsh. in Journal of Alloys and Compounds. 2015;640:480-487.
doi:10.1016/j.jallcom.2015.04.003 .
Prsić, S., Savić, Slavica M., Branković, Zorica, Vrtnik, S., Dapčević, Aleksandra, Branković, Goran, "Mechanochemically assisted solid-state and citric acid complex syntheses of Cu-doped sodium cobaltite ceramicsh" in Journal of Alloys and Compounds, 640 (2015):480-487,
https://doi.org/10.1016/j.jallcom.2015.04.003 . .

DSpace software copyright © 2002-2015  DuraSpace
О репозиторијуму TechnoRep | Пошаљите запажања

OpenAIRERCUB
 

 

Комплетан репозиторијумИнституције/групеАуториНасловиТемеОва институцијаАуториНасловиТеме

Статистика

Преглед статистика

DSpace software copyright © 2002-2015  DuraSpace
О репозиторијуму TechnoRep | Пошаљите запажања

OpenAIRERCUB