TechnoRep - Faculty of Technology and Metallurgy Repository
University of Belgrade - Faculty of Technology and Metallurgy
    • English
    • Српски
    • Српски (Serbia)
  • English 
    • English
    • Serbian (Cyrillic)
    • Serbian (Latin)
  • Login
View Item 
  •   TechnoRep
  • Tehnološko-metalurški fakultet
  • Radovi istraživača / Researchers’ publications (TMF)
  • View Item
  •   TechnoRep
  • Tehnološko-metalurški fakultet
  • Radovi istraživača / Researchers’ publications (TMF)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Dissolution of copper mineral phases in biological fluids and the controlled release of copper ions from mineralized alginate hydrogels

Thumbnail
2015
3026.pdf (2.013Mb)
Authors
Bassett, David C.
Madžovska, Ivana
Beckwith, Kai S.
Melo, Thor Bernt
Obradović, Bojana
Sikorski, Pawel
Article (Published version)
Metadata
Show full item record
Abstract
Here we investigate the dissolution behaviour of copper minerals contained within biocompatible alginate hydrogels. Copper has a number of biological effects and has most recently been evaluated as an alternative to expensive and controversial growth factors for applications in tissue engineering. Precise control and sustained release of copper ions are important due to a narrow therapeutic window of this potentially toxic ion, and alginate would appear to be a good material of choice for this purpose. We found that aqueously insoluble copper minerals could be precipitated during gelling within or mixed into alginate hydrogels in the form of microbeads prior to gelling to serve as depots of copper. These minerals were found to be soluble in a variety of biological fluids relevant to in vitro and in vivo investigations, and the alginate carrier served as a barrier to diffusion of these ions and therefore offered control over the rate and duration of release (Cu2+ release rates observed ...between 10-750 mu Mol g(-1) h(-1) and duration for up to 32 d). Copper mineral and copper mineralized alginate microbeads were characterized using powder x-ray diffraction, FTIR, thermogravimetric analysis and scanning electron microscopy. Dissolution kinetics were studied based on measurements of copper ion concentrations using colourimetric methods. In addition we characterized the complexes formed between released copper ions and biological fluids by electron paramagnetic spectroscopy which offers an insight into the behaviour of these materials in the body.

Keywords:
bioinorganics / controlled release / alginate / biomineralization / biotechnology
Source:
Biomedical Materials, 2015, 10, 1
Publisher:
  • IOP Publishing Ltd, Bristol
Funding / projects:
  • Research Council of NorwayResearch Council of Norway [214607]
  • European Cooperation in Science and Technology (COST) framework through the MP1005 NAMABIO action
  • Synthesis, processing and applications of nanostructured multifunctional materials with defined properties (RS-45019)

DOI: 10.1088/1748-6041/10/1/015006

ISSN: 1748-6041

PubMed: 25546880

WoS: 000350975400007

Scopus: 2-s2.0-84924284184
[ Google Scholar ]
5
5
URI
http://TechnoRep.tmf.bg.ac.rs/handle/123456789/3029
Collections
  • Radovi istraživača / Researchers’ publications (TMF)
Institution/Community
Tehnološko-metalurški fakultet
TY  - JOUR
AU  - Bassett, David C.
AU  - Madžovska, Ivana
AU  - Beckwith, Kai S.
AU  - Melo, Thor Bernt
AU  - Obradović, Bojana
AU  - Sikorski, Pawel
PY  - 2015
UR  - http://TechnoRep.tmf.bg.ac.rs/handle/123456789/3029
AB  - Here we investigate the dissolution behaviour of copper minerals contained within biocompatible alginate hydrogels. Copper has a number of biological effects and has most recently been evaluated as an alternative to expensive and controversial growth factors for applications in tissue engineering. Precise control and sustained release of copper ions are important due to a narrow therapeutic window of this potentially toxic ion, and alginate would appear to be a good material of choice for this purpose. We found that aqueously insoluble copper minerals could be precipitated during gelling within or mixed into alginate hydrogels in the form of microbeads prior to gelling to serve as depots of copper. These minerals were found to be soluble in a variety of biological fluids relevant to in vitro and in vivo investigations, and the alginate carrier served as a barrier to diffusion of these ions and therefore offered control over the rate and duration of release (Cu2+ release rates observed between 10-750 mu Mol g(-1) h(-1) and duration for up to 32 d). Copper mineral and copper mineralized alginate microbeads were characterized using powder x-ray diffraction, FTIR, thermogravimetric analysis and scanning electron microscopy. Dissolution kinetics were studied based on measurements of copper ion concentrations using colourimetric methods. In addition we characterized the complexes formed between released copper ions and biological fluids by electron paramagnetic spectroscopy which offers an insight into the behaviour of these materials in the body.
PB  - IOP Publishing Ltd, Bristol
T2  - Biomedical Materials
T1  - Dissolution of copper mineral phases in biological fluids and the controlled release of copper ions from mineralized alginate hydrogels
IS  - 1
VL  - 10
DO  - 10.1088/1748-6041/10/1/015006
ER  - 
@article{
author = "Bassett, David C. and Madžovska, Ivana and Beckwith, Kai S. and Melo, Thor Bernt and Obradović, Bojana and Sikorski, Pawel",
year = "2015",
abstract = "Here we investigate the dissolution behaviour of copper minerals contained within biocompatible alginate hydrogels. Copper has a number of biological effects and has most recently been evaluated as an alternative to expensive and controversial growth factors for applications in tissue engineering. Precise control and sustained release of copper ions are important due to a narrow therapeutic window of this potentially toxic ion, and alginate would appear to be a good material of choice for this purpose. We found that aqueously insoluble copper minerals could be precipitated during gelling within or mixed into alginate hydrogels in the form of microbeads prior to gelling to serve as depots of copper. These minerals were found to be soluble in a variety of biological fluids relevant to in vitro and in vivo investigations, and the alginate carrier served as a barrier to diffusion of these ions and therefore offered control over the rate and duration of release (Cu2+ release rates observed between 10-750 mu Mol g(-1) h(-1) and duration for up to 32 d). Copper mineral and copper mineralized alginate microbeads were characterized using powder x-ray diffraction, FTIR, thermogravimetric analysis and scanning electron microscopy. Dissolution kinetics were studied based on measurements of copper ion concentrations using colourimetric methods. In addition we characterized the complexes formed between released copper ions and biological fluids by electron paramagnetic spectroscopy which offers an insight into the behaviour of these materials in the body.",
publisher = "IOP Publishing Ltd, Bristol",
journal = "Biomedical Materials",
title = "Dissolution of copper mineral phases in biological fluids and the controlled release of copper ions from mineralized alginate hydrogels",
number = "1",
volume = "10",
doi = "10.1088/1748-6041/10/1/015006"
}
Bassett, D. C., Madžovska, I., Beckwith, K. S., Melo, T. B., Obradović, B.,& Sikorski, P.. (2015). Dissolution of copper mineral phases in biological fluids and the controlled release of copper ions from mineralized alginate hydrogels. in Biomedical Materials
IOP Publishing Ltd, Bristol., 10(1).
https://doi.org/10.1088/1748-6041/10/1/015006
Bassett DC, Madžovska I, Beckwith KS, Melo TB, Obradović B, Sikorski P. Dissolution of copper mineral phases in biological fluids and the controlled release of copper ions from mineralized alginate hydrogels. in Biomedical Materials. 2015;10(1).
doi:10.1088/1748-6041/10/1/015006 .
Bassett, David C., Madžovska, Ivana, Beckwith, Kai S., Melo, Thor Bernt, Obradović, Bojana, Sikorski, Pawel, "Dissolution of copper mineral phases in biological fluids and the controlled release of copper ions from mineralized alginate hydrogels" in Biomedical Materials, 10, no. 1 (2015),
https://doi.org/10.1088/1748-6041/10/1/015006 . .

DSpace software copyright © 2002-2015  DuraSpace
About TechnoRep | Send Feedback

OpenAIRERCUB
 

 

All of DSpaceInstitutions/communitiesAuthorsTitlesSubjectsThis institutionAuthorsTitlesSubjects

Statistics

View Usage Statistics

DSpace software copyright © 2002-2015  DuraSpace
About TechnoRep | Send Feedback

OpenAIRERCUB