TechnoRep - Faculty of Technology and Metallurgy Repository
University of Belgrade - Faculty of Technology and Metallurgy
    • English
    • Српски
    • Српски (Serbia)
  • English 
    • English
    • Serbian (Cyrillic)
    • Serbian (Latin)
  • Login
View Item 
  •   TechnoRep
  • Tehnološko-metalurški fakultet
  • Radovi istraživača / Researchers’ publications (TMF)
  • View Item
  •   TechnoRep
  • Tehnološko-metalurški fakultet
  • Radovi istraživača / Researchers’ publications (TMF)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Experimental investigation of heat transfer in three-phase fluidized bed cooling column

Thumbnail
2015
3078.pdf (385.6Kb)
Authors
Arsenijević, Zorana
Kaluđerović-Radoičić, Tatjana
Đuriš, Mihal
Grbavčić, Željko
Article (Published version)
Metadata
Show full item record
Abstract
A three-phase (gas-liquid-solid) fluidized bed was used to study the heat transfer characteristics of a system consisting of low-density (290 kg/m(3)) spherical particles (2 cm diameter) in a 0.25 m cylindrical column with counter-current flow of water and air. The experimental investigation and mathematical modeling of heat transfer between the hot air and the cooling water was carried out. The experiments were conducted for a variety of different fluid flow rates and inlet air temperatures, while the air flow rate was kept constant. Based on the obtained experimental results, a new correlation for heat transfer in a three-phase fluidized system was proposed. The mean percentage error between the experimental and the correlated values of the j(Hp) obtained was 1.69%. The hydrodynamic parameters of the system were also calculated according to the available literature correlations.
Keywords:
turbulent bed contactor / fluidization / heat transfer coefficient / hydrodynamics
Source:
Chemical Industry & Chemical Engineering Quarterly, 2015, 21, 4, 519-526
Publisher:
  • Savez hemijskih inženjera, Beograd
Funding / projects:
  • The development of efficient chemical-engineering processes based on the transport phenomena research and process intensification principles (RS-172022)

DOI: 10.2298/CICEQ141022008A

ISSN: 1451-9372

WoS: 000370446400007

Scopus: 2-s2.0-84949755697
[ Google Scholar ]
URI
http://TechnoRep.tmf.bg.ac.rs/handle/123456789/3081
Collections
  • Radovi istraživača / Researchers’ publications (TMF)
Institution/Community
Tehnološko-metalurški fakultet
TY  - JOUR
AU  - Arsenijević, Zorana
AU  - Kaluđerović-Radoičić, Tatjana
AU  - Đuriš, Mihal
AU  - Grbavčić, Željko
PY  - 2015
UR  - http://TechnoRep.tmf.bg.ac.rs/handle/123456789/3081
AB  - A three-phase (gas-liquid-solid) fluidized bed was used to study the heat transfer characteristics of a system consisting of low-density (290 kg/m(3)) spherical particles (2 cm diameter) in a 0.25 m cylindrical column with counter-current flow of water and air. The experimental investigation and mathematical modeling of heat transfer between the hot air and the cooling water was carried out. The experiments were conducted for a variety of different fluid flow rates and inlet air temperatures, while the air flow rate was kept constant. Based on the obtained experimental results, a new correlation for heat transfer in a three-phase fluidized system was proposed. The mean percentage error between the experimental and the correlated values of the j(Hp) obtained was 1.69%. The hydrodynamic parameters of the system were also calculated according to the available literature correlations.
PB  - Savez hemijskih inženjera, Beograd
T2  - Chemical Industry & Chemical Engineering Quarterly
T1  - Experimental investigation of heat transfer in three-phase fluidized bed cooling column
EP  - 526
IS  - 4
SP  - 519
VL  - 21
DO  - 10.2298/CICEQ141022008A
ER  - 
@article{
author = "Arsenijević, Zorana and Kaluđerović-Radoičić, Tatjana and Đuriš, Mihal and Grbavčić, Željko",
year = "2015",
abstract = "A three-phase (gas-liquid-solid) fluidized bed was used to study the heat transfer characteristics of a system consisting of low-density (290 kg/m(3)) spherical particles (2 cm diameter) in a 0.25 m cylindrical column with counter-current flow of water and air. The experimental investigation and mathematical modeling of heat transfer between the hot air and the cooling water was carried out. The experiments were conducted for a variety of different fluid flow rates and inlet air temperatures, while the air flow rate was kept constant. Based on the obtained experimental results, a new correlation for heat transfer in a three-phase fluidized system was proposed. The mean percentage error between the experimental and the correlated values of the j(Hp) obtained was 1.69%. The hydrodynamic parameters of the system were also calculated according to the available literature correlations.",
publisher = "Savez hemijskih inženjera, Beograd",
journal = "Chemical Industry & Chemical Engineering Quarterly",
title = "Experimental investigation of heat transfer in three-phase fluidized bed cooling column",
pages = "526-519",
number = "4",
volume = "21",
doi = "10.2298/CICEQ141022008A"
}
Arsenijević, Z., Kaluđerović-Radoičić, T., Đuriš, M.,& Grbavčić, Ž.. (2015). Experimental investigation of heat transfer in three-phase fluidized bed cooling column. in Chemical Industry & Chemical Engineering Quarterly
Savez hemijskih inženjera, Beograd., 21(4), 519-526.
https://doi.org/10.2298/CICEQ141022008A
Arsenijević Z, Kaluđerović-Radoičić T, Đuriš M, Grbavčić Ž. Experimental investigation of heat transfer in three-phase fluidized bed cooling column. in Chemical Industry & Chemical Engineering Quarterly. 2015;21(4):519-526.
doi:10.2298/CICEQ141022008A .
Arsenijević, Zorana, Kaluđerović-Radoičić, Tatjana, Đuriš, Mihal, Grbavčić, Željko, "Experimental investigation of heat transfer in three-phase fluidized bed cooling column" in Chemical Industry & Chemical Engineering Quarterly, 21, no. 4 (2015):519-526,
https://doi.org/10.2298/CICEQ141022008A . .

DSpace software copyright © 2002-2015  DuraSpace
About TechnoRep | Send Feedback

OpenAIRERCUB
 

 

All of DSpaceInstitutions/communitiesAuthorsTitlesSubjectsThis institutionAuthorsTitlesSubjects

Statistics

View Usage Statistics

DSpace software copyright © 2002-2015  DuraSpace
About TechnoRep | Send Feedback

OpenAIRERCUB