TechnoRep - Faculty of Technology and Metallurgy Repository
University of Belgrade - Faculty of Technology and Metallurgy
    • English
    • Српски
    • Српски (Serbia)
  • English 
    • English
    • Serbian (Cyrillic)
    • Serbian (Latin)
  • Login
View Item 
  •   TechnoRep
  • Tehnološko-metalurški fakultet
  • Radovi istraživača / Researchers’ publications (TMF)
  • View Item
  •   TechnoRep
  • Tehnološko-metalurški fakultet
  • Radovi istraživača / Researchers’ publications (TMF)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Synthesis and characterization of interpenetrating polymer network based on sodium alginate and methacrylic acid and potential application for immobilization of TiO2 nanoparticles

Authorized Users Only
2015
Authors
Lučić-Škorić, Marija
Milosavljević, Nedeljko
Radetić, Maja
Šaponjić, Zoran
Radoičić, Marija B.
Kalagasidis Krušić, Melina
Article (Published version)
Metadata
Show full item record
Abstract
An interpenetrating polymer network (IPN) based on the sodium alginate (A) and partially neutralized poly(methacrylic acid) (MAA) was prepared by free radical polymerization followed by additional cross-linking of sodium alginate with calcium ions. Obtained material (A/MAA IPN) was characterized by FTIR spectroscopy, thermogravimetric analysis, scanning electron microscopy, and rheological measurements. Swelling behavior of synthetized IPN has been also investigated. TiO2 nanoparticles (TiO2 NPs) were immobilized onto A/MAA IPN by dip-coating method and obtained TiO2/IPN nanocomposite was used for removal of the methylene blue (MB) from aqueous solution. The photodegradation (under illumination) and sorption (in the dark) processes for dye removal were monitored through decrease of dye concentration in the solution by UV/VIS spectrometer. The TiO2/IPN nanocomposite sorbed approximately 93% of the MB from a 10 mg L-1 MB solution in the dark, but no degradation occurred. Likewise, more t...han 93% of dye was removed after 8 h of illumination. However, after 24 h of illumination, the samples were discolored indicating that dye molecules were successfully degraded. Thus, the TiO2/IPN nanocomposite could be utilized in the photodegradation-sorption process for the abatement of pollutants in water. POLYM. ENG. SCI., 55:2511-2518, 2015.

Source:
Polymer Engineering and Science, 2015, 55, 11, 2511-2518
Publisher:
  • Wiley, Hoboken
Funding / projects:
  • Size-, shape- and structure- dependent properties of nanoparticles and nanocomposites (RS-172056)
  • Synthesis and characterization of novel functional polymers and polymeric nanocomposites (RS-172062)

DOI: 10.1002/pen.24141

ISSN: 0032-3888

WoS: 000362830200009

Scopus: 2-s2.0-84943665460
[ Google Scholar ]
7
3
URI
http://TechnoRep.tmf.bg.ac.rs/handle/123456789/3133
Collections
  • Radovi istraživača / Researchers’ publications (TMF)
  • Radovi istraživača (Inovacioni centar) / Researchers’ publications (Innovation Centre)
Institution/Community
Tehnološko-metalurški fakultet
TY  - JOUR
AU  - Lučić-Škorić, Marija
AU  - Milosavljević, Nedeljko
AU  - Radetić, Maja
AU  - Šaponjić, Zoran
AU  - Radoičić, Marija B.
AU  - Kalagasidis Krušić, Melina
PY  - 2015
UR  - http://TechnoRep.tmf.bg.ac.rs/handle/123456789/3133
AB  - An interpenetrating polymer network (IPN) based on the sodium alginate (A) and partially neutralized poly(methacrylic acid) (MAA) was prepared by free radical polymerization followed by additional cross-linking of sodium alginate with calcium ions. Obtained material (A/MAA IPN) was characterized by FTIR spectroscopy, thermogravimetric analysis, scanning electron microscopy, and rheological measurements. Swelling behavior of synthetized IPN has been also investigated. TiO2 nanoparticles (TiO2 NPs) were immobilized onto A/MAA IPN by dip-coating method and obtained TiO2/IPN nanocomposite was used for removal of the methylene blue (MB) from aqueous solution. The photodegradation (under illumination) and sorption (in the dark) processes for dye removal were monitored through decrease of dye concentration in the solution by UV/VIS spectrometer. The TiO2/IPN nanocomposite sorbed approximately 93% of the MB from a 10 mg L-1 MB solution in the dark, but no degradation occurred. Likewise, more than 93% of dye was removed after 8 h of illumination. However, after 24 h of illumination, the samples were discolored indicating that dye molecules were successfully degraded. Thus, the TiO2/IPN nanocomposite could be utilized in the photodegradation-sorption process for the abatement of pollutants in water. POLYM. ENG. SCI., 55:2511-2518, 2015.
PB  - Wiley, Hoboken
T2  - Polymer Engineering and Science
T1  - Synthesis and characterization of interpenetrating polymer network based on sodium alginate and methacrylic acid and potential application for immobilization of TiO2 nanoparticles
EP  - 2518
IS  - 11
SP  - 2511
VL  - 55
DO  - 10.1002/pen.24141
ER  - 
@article{
author = "Lučić-Škorić, Marija and Milosavljević, Nedeljko and Radetić, Maja and Šaponjić, Zoran and Radoičić, Marija B. and Kalagasidis Krušić, Melina",
year = "2015",
abstract = "An interpenetrating polymer network (IPN) based on the sodium alginate (A) and partially neutralized poly(methacrylic acid) (MAA) was prepared by free radical polymerization followed by additional cross-linking of sodium alginate with calcium ions. Obtained material (A/MAA IPN) was characterized by FTIR spectroscopy, thermogravimetric analysis, scanning electron microscopy, and rheological measurements. Swelling behavior of synthetized IPN has been also investigated. TiO2 nanoparticles (TiO2 NPs) were immobilized onto A/MAA IPN by dip-coating method and obtained TiO2/IPN nanocomposite was used for removal of the methylene blue (MB) from aqueous solution. The photodegradation (under illumination) and sorption (in the dark) processes for dye removal were monitored through decrease of dye concentration in the solution by UV/VIS spectrometer. The TiO2/IPN nanocomposite sorbed approximately 93% of the MB from a 10 mg L-1 MB solution in the dark, but no degradation occurred. Likewise, more than 93% of dye was removed after 8 h of illumination. However, after 24 h of illumination, the samples were discolored indicating that dye molecules were successfully degraded. Thus, the TiO2/IPN nanocomposite could be utilized in the photodegradation-sorption process for the abatement of pollutants in water. POLYM. ENG. SCI., 55:2511-2518, 2015.",
publisher = "Wiley, Hoboken",
journal = "Polymer Engineering and Science",
title = "Synthesis and characterization of interpenetrating polymer network based on sodium alginate and methacrylic acid and potential application for immobilization of TiO2 nanoparticles",
pages = "2518-2511",
number = "11",
volume = "55",
doi = "10.1002/pen.24141"
}
Lučić-Škorić, M., Milosavljević, N., Radetić, M., Šaponjić, Z., Radoičić, M. B.,& Kalagasidis Krušić, M.. (2015). Synthesis and characterization of interpenetrating polymer network based on sodium alginate and methacrylic acid and potential application for immobilization of TiO2 nanoparticles. in Polymer Engineering and Science
Wiley, Hoboken., 55(11), 2511-2518.
https://doi.org/10.1002/pen.24141
Lučić-Škorić M, Milosavljević N, Radetić M, Šaponjić Z, Radoičić MB, Kalagasidis Krušić M. Synthesis and characterization of interpenetrating polymer network based on sodium alginate and methacrylic acid and potential application for immobilization of TiO2 nanoparticles. in Polymer Engineering and Science. 2015;55(11):2511-2518.
doi:10.1002/pen.24141 .
Lučić-Škorić, Marija, Milosavljević, Nedeljko, Radetić, Maja, Šaponjić, Zoran, Radoičić, Marija B., Kalagasidis Krušić, Melina, "Synthesis and characterization of interpenetrating polymer network based on sodium alginate and methacrylic acid and potential application for immobilization of TiO2 nanoparticles" in Polymer Engineering and Science, 55, no. 11 (2015):2511-2518,
https://doi.org/10.1002/pen.24141 . .

DSpace software copyright © 2002-2015  DuraSpace
About TechnoRep | Send Feedback

OpenAIRERCUB
 

 

All of DSpaceInstitutions/communitiesAuthorsTitlesSubjectsThis institutionAuthorsTitlesSubjects

Statistics

View Usage Statistics

DSpace software copyright © 2002-2015  DuraSpace
About TechnoRep | Send Feedback

OpenAIRERCUB