TechnoRep - Faculty of Technology and Metallurgy Repository
University of Belgrade - Faculty of Technology and Metallurgy
    • English
    • Српски
    • Српски (Serbia)
  • English 
    • English
    • Serbian (Cyrillic)
    • Serbian (Latin)
  • Login
View Item 
  •   TechnoRep
  • Tehnološko-metalurški fakultet
  • Radovi istraživača / Researchers’ publications (TMF)
  • View Item
  •   TechnoRep
  • Tehnološko-metalurški fakultet
  • Radovi istraživača / Researchers’ publications (TMF)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

The influence of corona treatment and impregnation with colloidal TiO2 nanoparticles on biodegradability of cotton fabric

Authorized Users Only
2017
Authors
Tomsić, Brigita
Vasiljević, Jelena
Simončič, Barbara
Radoičić, Marija B.
Radetić, Maja
Article (Published version)
Metadata
Show full item record
Abstract
This study discusses the effect of corona pre-treatment at atmospheric pressure and subsequent loading of colloidal TiO2 nanoparticles on the biodegradation behavior of cotton fabric. Biodegradation performance of the control and finished samples was evaluated by standard soil burial tests in predetermined periods of 3, 9 and 18 days. Color and breaking strength measurements were utilized for assessment of biodegradation progress. Morphological and chemical changes induced by biodegradation were analysed by SEM and FT-IR analyses, respectively. Colorimetric, morphological and chemical changes induced by the biodegradation process were slightly less prominent on corona pre-treated cotton fabric impregnated with TiO2 nanoparticles compared to corona treated and control cotton fabric. Although the breaking strength of all samples significantly decreased after 18 days of soil burial, this decline was the least evident on the sample impregnated with TiO2 nanoparticles. However, taking into ...account the extent of these differences, the influence of TiO2 nanoparticles on biodegradation rate of cotton fabric, which underwent a combined treatment corona/impregnation with TiO2 nanoparticles, could be considered as insignificant. These results confirm that chemical modification of cotton fabrics with plasma and subsequent loading of TiO2 still maintained sustainability of cellulose fibres.

Keywords:
Cotton fabric / Corona / TiO2 nanoparticles / Biodegradation / Soil burial test
Source:
Cellulose, 2017, 24, 10, 4533-4545
Publisher:
  • Springer, Dordrecht
Funding / projects:
  • Slovenian Research AgencySlovenian Research Agency - Slovenia
  • Size-, shape- and structure- dependent properties of nanoparticles and nanocomposites (RS-172056)

DOI: 10.1007/s10570-017-1415-6

ISSN: 0969-0239

WoS: 000410759600032

Scopus: 2-s2.0-85026435868
[ Google Scholar ]
9
8
URI
http://TechnoRep.tmf.bg.ac.rs/handle/123456789/3543
Collections
  • Radovi istraživača / Researchers’ publications (TMF)
Institution/Community
Tehnološko-metalurški fakultet
TY  - JOUR
AU  - Tomsić, Brigita
AU  - Vasiljević, Jelena
AU  - Simončič, Barbara
AU  - Radoičić, Marija B.
AU  - Radetić, Maja
PY  - 2017
UR  - http://TechnoRep.tmf.bg.ac.rs/handle/123456789/3543
AB  - This study discusses the effect of corona pre-treatment at atmospheric pressure and subsequent loading of colloidal TiO2 nanoparticles on the biodegradation behavior of cotton fabric. Biodegradation performance of the control and finished samples was evaluated by standard soil burial tests in predetermined periods of 3, 9 and 18 days. Color and breaking strength measurements were utilized for assessment of biodegradation progress. Morphological and chemical changes induced by biodegradation were analysed by SEM and FT-IR analyses, respectively. Colorimetric, morphological and chemical changes induced by the biodegradation process were slightly less prominent on corona pre-treated cotton fabric impregnated with TiO2 nanoparticles compared to corona treated and control cotton fabric. Although the breaking strength of all samples significantly decreased after 18 days of soil burial, this decline was the least evident on the sample impregnated with TiO2 nanoparticles. However, taking into account the extent of these differences, the influence of TiO2 nanoparticles on biodegradation rate of cotton fabric, which underwent a combined treatment corona/impregnation with TiO2 nanoparticles, could be considered as insignificant. These results confirm that chemical modification of cotton fabrics with plasma and subsequent loading of TiO2 still maintained sustainability of cellulose fibres.
PB  - Springer, Dordrecht
T2  - Cellulose
T1  - The influence of corona treatment and impregnation with colloidal TiO2 nanoparticles on biodegradability of cotton fabric
EP  - 4545
IS  - 10
SP  - 4533
VL  - 24
DO  - 10.1007/s10570-017-1415-6
ER  - 
@article{
author = "Tomsić, Brigita and Vasiljević, Jelena and Simončič, Barbara and Radoičić, Marija B. and Radetić, Maja",
year = "2017",
abstract = "This study discusses the effect of corona pre-treatment at atmospheric pressure and subsequent loading of colloidal TiO2 nanoparticles on the biodegradation behavior of cotton fabric. Biodegradation performance of the control and finished samples was evaluated by standard soil burial tests in predetermined periods of 3, 9 and 18 days. Color and breaking strength measurements were utilized for assessment of biodegradation progress. Morphological and chemical changes induced by biodegradation were analysed by SEM and FT-IR analyses, respectively. Colorimetric, morphological and chemical changes induced by the biodegradation process were slightly less prominent on corona pre-treated cotton fabric impregnated with TiO2 nanoparticles compared to corona treated and control cotton fabric. Although the breaking strength of all samples significantly decreased after 18 days of soil burial, this decline was the least evident on the sample impregnated with TiO2 nanoparticles. However, taking into account the extent of these differences, the influence of TiO2 nanoparticles on biodegradation rate of cotton fabric, which underwent a combined treatment corona/impregnation with TiO2 nanoparticles, could be considered as insignificant. These results confirm that chemical modification of cotton fabrics with plasma and subsequent loading of TiO2 still maintained sustainability of cellulose fibres.",
publisher = "Springer, Dordrecht",
journal = "Cellulose",
title = "The influence of corona treatment and impregnation with colloidal TiO2 nanoparticles on biodegradability of cotton fabric",
pages = "4545-4533",
number = "10",
volume = "24",
doi = "10.1007/s10570-017-1415-6"
}
Tomsić, B., Vasiljević, J., Simončič, B., Radoičić, M. B.,& Radetić, M.. (2017). The influence of corona treatment and impregnation with colloidal TiO2 nanoparticles on biodegradability of cotton fabric. in Cellulose
Springer, Dordrecht., 24(10), 4533-4545.
https://doi.org/10.1007/s10570-017-1415-6
Tomsić B, Vasiljević J, Simončič B, Radoičić MB, Radetić M. The influence of corona treatment and impregnation with colloidal TiO2 nanoparticles on biodegradability of cotton fabric. in Cellulose. 2017;24(10):4533-4545.
doi:10.1007/s10570-017-1415-6 .
Tomsić, Brigita, Vasiljević, Jelena, Simončič, Barbara, Radoičić, Marija B., Radetić, Maja, "The influence of corona treatment and impregnation with colloidal TiO2 nanoparticles on biodegradability of cotton fabric" in Cellulose, 24, no. 10 (2017):4533-4545,
https://doi.org/10.1007/s10570-017-1415-6 . .

DSpace software copyright © 2002-2015  DuraSpace
About TechnoRep | Send Feedback

OpenAIRERCUB
 

 

All of DSpaceInstitutions/communitiesAuthorsTitlesSubjectsThis institutionAuthorsTitlesSubjects

Statistics

View Usage Statistics

DSpace software copyright © 2002-2015  DuraSpace
About TechnoRep | Send Feedback

OpenAIRERCUB