TechnoRep - Faculty of Technology and Metallurgy Repository
University of Belgrade - Faculty of Technology and Metallurgy
    • English
    • Српски
    • Српски (Serbia)
  • English 
    • English
    • Serbian (Cyrillic)
    • Serbian (Latin)
  • Login
View Item 
  •   TechnoRep
  • Tehnološko-metalurški fakultet
  • Radovi istraživača / Researchers’ publications (TMF)
  • View Item
  •   TechnoRep
  • Tehnološko-metalurški fakultet
  • Radovi istraživača / Researchers’ publications (TMF)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Improvement of mechanical properties and antibacterial activity of crosslinked electrospun chitosan/poly (ethylene oxide) nanofibers

Authorized Users Only
2017
Authors
Grković, Mirjana
Stojanović, Dušica
Pavlović, Vladimir B.
Rajilić-Stojanović, Mirjana
Bjelović, Miloš
Uskoković, Petar
Article (Published version)
Metadata
Show full item record
Abstract
In this study conditions for green crosslinking with citric acid of chitosan/PEO (polyethylene oxide) nanofibers were evaluated. The thermal in situ crosslinking enabled penetration of crosslinking agent into the matrix providing an improvement of antibacterial activity, thermal stability and mechanical properties of the prepared material. With an increase of temperature above 80 degrees C antibacterial activity against Staphylococcus aureus and Escherichia coil, inversely decreased. Moreover crosslinking provided prolonged controlled drug release with outstanding increase of mechanical properties observed by nanoindentation measurements. Results of the investigation indicated crosslinking as an important parameter for producing material with multifunctional characteristics suitable for drug delivery and tissue engineering.
Keywords:
Polymer-matrix composites (PMCs) / Nano-structures / Mechanical properties / Thermal properties
Source:
Composites Part B-Engineering, 2017, 121, 58-67
Publisher:
  • Elsevier Sci Ltd, Oxford
Funding / projects:
  • Synthesis, processing and applications of nanostructured multifunctional materials with defined properties (RS-45019)
  • Predefined functional properties polymer composite materials processes and equipment development (RS-34011)

DOI: 10.1016/j.compositesb.2017.03.024

ISSN: 1359-8368

WoS: 000407413000005

Scopus: 2-s2.0-85016081941
[ Google Scholar ]
38
33
URI
http://TechnoRep.tmf.bg.ac.rs/handle/123456789/3558
Collections
  • Radovi istraživača / Researchers’ publications (TMF)
Institution/Community
Tehnološko-metalurški fakultet
TY  - JOUR
AU  - Grković, Mirjana
AU  - Stojanović, Dušica
AU  - Pavlović, Vladimir B.
AU  - Rajilić-Stojanović, Mirjana
AU  - Bjelović, Miloš
AU  - Uskoković, Petar
PY  - 2017
UR  - http://TechnoRep.tmf.bg.ac.rs/handle/123456789/3558
AB  - In this study conditions for green crosslinking with citric acid of chitosan/PEO (polyethylene oxide) nanofibers were evaluated. The thermal in situ crosslinking enabled penetration of crosslinking agent into the matrix providing an improvement of antibacterial activity, thermal stability and mechanical properties of the prepared material. With an increase of temperature above 80 degrees C antibacterial activity against Staphylococcus aureus and Escherichia coil, inversely decreased. Moreover crosslinking provided prolonged controlled drug release with outstanding increase of mechanical properties observed by nanoindentation measurements. Results of the investigation indicated crosslinking as an important parameter for producing material with multifunctional characteristics suitable for drug delivery and tissue engineering.
PB  - Elsevier Sci Ltd, Oxford
T2  - Composites Part B-Engineering
T1  - Improvement of mechanical properties and antibacterial activity of crosslinked electrospun chitosan/poly (ethylene oxide) nanofibers
EP  - 67
SP  - 58
VL  - 121
DO  - 10.1016/j.compositesb.2017.03.024
ER  - 
@article{
author = "Grković, Mirjana and Stojanović, Dušica and Pavlović, Vladimir B. and Rajilić-Stojanović, Mirjana and Bjelović, Miloš and Uskoković, Petar",
year = "2017",
abstract = "In this study conditions for green crosslinking with citric acid of chitosan/PEO (polyethylene oxide) nanofibers were evaluated. The thermal in situ crosslinking enabled penetration of crosslinking agent into the matrix providing an improvement of antibacterial activity, thermal stability and mechanical properties of the prepared material. With an increase of temperature above 80 degrees C antibacterial activity against Staphylococcus aureus and Escherichia coil, inversely decreased. Moreover crosslinking provided prolonged controlled drug release with outstanding increase of mechanical properties observed by nanoindentation measurements. Results of the investigation indicated crosslinking as an important parameter for producing material with multifunctional characteristics suitable for drug delivery and tissue engineering.",
publisher = "Elsevier Sci Ltd, Oxford",
journal = "Composites Part B-Engineering",
title = "Improvement of mechanical properties and antibacterial activity of crosslinked electrospun chitosan/poly (ethylene oxide) nanofibers",
pages = "67-58",
volume = "121",
doi = "10.1016/j.compositesb.2017.03.024"
}
Grković, M., Stojanović, D., Pavlović, V. B., Rajilić-Stojanović, M., Bjelović, M.,& Uskoković, P.. (2017). Improvement of mechanical properties and antibacterial activity of crosslinked electrospun chitosan/poly (ethylene oxide) nanofibers. in Composites Part B-Engineering
Elsevier Sci Ltd, Oxford., 121, 58-67.
https://doi.org/10.1016/j.compositesb.2017.03.024
Grković M, Stojanović D, Pavlović VB, Rajilić-Stojanović M, Bjelović M, Uskoković P. Improvement of mechanical properties and antibacterial activity of crosslinked electrospun chitosan/poly (ethylene oxide) nanofibers. in Composites Part B-Engineering. 2017;121:58-67.
doi:10.1016/j.compositesb.2017.03.024 .
Grković, Mirjana, Stojanović, Dušica, Pavlović, Vladimir B., Rajilić-Stojanović, Mirjana, Bjelović, Miloš, Uskoković, Petar, "Improvement of mechanical properties and antibacterial activity of crosslinked electrospun chitosan/poly (ethylene oxide) nanofibers" in Composites Part B-Engineering, 121 (2017):58-67,
https://doi.org/10.1016/j.compositesb.2017.03.024 . .

DSpace software copyright © 2002-2015  DuraSpace
About TechnoRep | Send Feedback

OpenAIRERCUB
 

 

All of DSpaceInstitutions/communitiesAuthorsTitlesSubjectsThis institutionAuthorsTitlesSubjects

Statistics

View Usage Statistics

DSpace software copyright © 2002-2015  DuraSpace
About TechnoRep | Send Feedback

OpenAIRERCUB