TechnoRep - Repozitorijum Tehnološko-metalurškog fakulteta
Repozitorijum Tehnološko-metalurškog fakulteta
    • English
    • Српски
    • Српски (Serbia)
  • Srpski (latinica) 
    • Engleski
    • Srpski (ćirilica)
    • Srpski (latinica)
  • Prijava
Pregled zapisa 
  •   TechnoRep
  • Tehnološko-metalurški fakultet
  • Radovi istraživača / Researchers’ publications (TMF)
  • Pregled zapisa
  •   TechnoRep
  • Tehnološko-metalurški fakultet
  • Radovi istraživača / Researchers’ publications (TMF)
  • Pregled zapisa
JavaScript is disabled for your browser. Some features of this site may not work without it.

Comparative life cycle assessment of Ni-based catalyst synthesis processes

Samo za registrovane korisnike
2017
Autori
Agarski, Boris
Nikolić, Vesna
Kamberović, Željko
Anđić, Zoran
Kosec, Borut
Budak, Igor
Članak u časopisu (Objavljena verzija)
Metapodaci
Prikaz svih podataka o dokumentu
Apstrakt
Ni-based catalysts supported on ceramics are particularly suitable for industrial applications, for instance reforming of hydrocarbons to produce synthesis gas or hydrogen and production of carbon nanofibers. Conventional synthesis processes for all metal/ceramic catalysts are impregnation, precipitation, co-precipitation and others. The authors have previously developed a novel process for the synthesis of Ni-based catalysts supported on reticulated ceramic foams, including impregnation of foams with ultrasonically generated aerosols of dissolved metal chlorides. By using appropriate multi-criteria analysis methods, the authors concluded that the novel process for the synthesis of Ni-based catalysts was superior in terms of economic and technological aspects. The aim of this research was to compare the novel synthesis processes for a Ni-Pd/Al2O3 catalyst and for other Ni-based catalysts by performing life cycle assessment and evaluating the environmental impacts of each synthesis proc...ess. Characterisation results showed that the dominant environmental impact results from production of palladium (II) chloride for the Ni-Pd/Al2O3 catalyst synthesis process, while the other catalyst synthesis process had large environmental impacts associated with high energy consumption. The final outcome, obtained from comparison of normalisation results, indicates that the novel Ni-Pd/Al2O3 catalyst synthesis process had the smallest environmental impact.

Ključne reči:
Novel synthesis process / Life cycle assessment / Ni-based catalyst
Izvor:
Journal of Cleaner Production, 2017, 162, 7-15
Izdavač:
  • Elsevier Sci Ltd, Oxford
Finansiranje / projekti:
  • Inovativna sinergija nus-produkata, minimizacije otpada i čistije proizvodnje u metalurgiji (RS-34033)
  • Istraživanje i razvoj metoda modeliranja i postupaka izrade dentalnih nadoknada primenom savremenih tehnologija i računarom podržanih sistema (RS-35020)

DOI: 10.1016/j.jclepro.2017.06.012

ISSN: 0959-6526

WoS: 000407185500002

Scopus: 2-s2.0-85024099298
[ Google Scholar ]
21
16
URI
http://TechnoRep.tmf.bg.ac.rs/handle/123456789/3560
Kolekcije
  • Radovi istraživača / Researchers’ publications (TMF)
  • Radovi istraživača (Inovacioni centar) / Researchers’ publications (Innovation Centre)
Institucija/grupa
Tehnološko-metalurški fakultet
TY  - JOUR
AU  - Agarski, Boris
AU  - Nikolić, Vesna
AU  - Kamberović, Željko
AU  - Anđić, Zoran
AU  - Kosec, Borut
AU  - Budak, Igor
PY  - 2017
UR  - http://TechnoRep.tmf.bg.ac.rs/handle/123456789/3560
AB  - Ni-based catalysts supported on ceramics are particularly suitable for industrial applications, for instance reforming of hydrocarbons to produce synthesis gas or hydrogen and production of carbon nanofibers. Conventional synthesis processes for all metal/ceramic catalysts are impregnation, precipitation, co-precipitation and others. The authors have previously developed a novel process for the synthesis of Ni-based catalysts supported on reticulated ceramic foams, including impregnation of foams with ultrasonically generated aerosols of dissolved metal chlorides. By using appropriate multi-criteria analysis methods, the authors concluded that the novel process for the synthesis of Ni-based catalysts was superior in terms of economic and technological aspects. The aim of this research was to compare the novel synthesis processes for a Ni-Pd/Al2O3 catalyst and for other Ni-based catalysts by performing life cycle assessment and evaluating the environmental impacts of each synthesis process. Characterisation results showed that the dominant environmental impact results from production of palladium (II) chloride for the Ni-Pd/Al2O3 catalyst synthesis process, while the other catalyst synthesis process had large environmental impacts associated with high energy consumption. The final outcome, obtained from comparison of normalisation results, indicates that the novel Ni-Pd/Al2O3 catalyst synthesis process had the smallest environmental impact.
PB  - Elsevier Sci Ltd, Oxford
T2  - Journal of Cleaner Production
T1  - Comparative life cycle assessment of Ni-based catalyst synthesis processes
EP  - 15
SP  - 7
VL  - 162
DO  - 10.1016/j.jclepro.2017.06.012
ER  - 
@article{
author = "Agarski, Boris and Nikolić, Vesna and Kamberović, Željko and Anđić, Zoran and Kosec, Borut and Budak, Igor",
year = "2017",
abstract = "Ni-based catalysts supported on ceramics are particularly suitable for industrial applications, for instance reforming of hydrocarbons to produce synthesis gas or hydrogen and production of carbon nanofibers. Conventional synthesis processes for all metal/ceramic catalysts are impregnation, precipitation, co-precipitation and others. The authors have previously developed a novel process for the synthesis of Ni-based catalysts supported on reticulated ceramic foams, including impregnation of foams with ultrasonically generated aerosols of dissolved metal chlorides. By using appropriate multi-criteria analysis methods, the authors concluded that the novel process for the synthesis of Ni-based catalysts was superior in terms of economic and technological aspects. The aim of this research was to compare the novel synthesis processes for a Ni-Pd/Al2O3 catalyst and for other Ni-based catalysts by performing life cycle assessment and evaluating the environmental impacts of each synthesis process. Characterisation results showed that the dominant environmental impact results from production of palladium (II) chloride for the Ni-Pd/Al2O3 catalyst synthesis process, while the other catalyst synthesis process had large environmental impacts associated with high energy consumption. The final outcome, obtained from comparison of normalisation results, indicates that the novel Ni-Pd/Al2O3 catalyst synthesis process had the smallest environmental impact.",
publisher = "Elsevier Sci Ltd, Oxford",
journal = "Journal of Cleaner Production",
title = "Comparative life cycle assessment of Ni-based catalyst synthesis processes",
pages = "15-7",
volume = "162",
doi = "10.1016/j.jclepro.2017.06.012"
}
Agarski, B., Nikolić, V., Kamberović, Ž., Anđić, Z., Kosec, B.,& Budak, I.. (2017). Comparative life cycle assessment of Ni-based catalyst synthesis processes. in Journal of Cleaner Production
Elsevier Sci Ltd, Oxford., 162, 7-15.
https://doi.org/10.1016/j.jclepro.2017.06.012
Agarski B, Nikolić V, Kamberović Ž, Anđić Z, Kosec B, Budak I. Comparative life cycle assessment of Ni-based catalyst synthesis processes. in Journal of Cleaner Production. 2017;162:7-15.
doi:10.1016/j.jclepro.2017.06.012 .
Agarski, Boris, Nikolić, Vesna, Kamberović, Željko, Anđić, Zoran, Kosec, Borut, Budak, Igor, "Comparative life cycle assessment of Ni-based catalyst synthesis processes" in Journal of Cleaner Production, 162 (2017):7-15,
https://doi.org/10.1016/j.jclepro.2017.06.012 . .

DSpace software copyright © 2002-2015  DuraSpace
O repozitorijumu TechnoRep | Pošaljite zapažanja

OpenAIRERCUB
 

 

Kompletan repozitorijumInstitucije/grupeAutoriNasloviTemeOva institucijaAutoriNasloviTeme

Statistika

Pregled statistika

DSpace software copyright © 2002-2015  DuraSpace
O repozitorijumu TechnoRep | Pošaljite zapažanja

OpenAIRERCUB