TechnoRep - Faculty of Technology and Metallurgy Repository
University of Belgrade - Faculty of Technology and Metallurgy
    • English
    • Српски
    • Српски (Serbia)
  • English 
    • English
    • Serbian (Cyrillic)
    • Serbian (Latin)
  • Login
View Item 
  •   TechnoRep
  • Tehnološko-metalurški fakultet
  • Radovi istraživača / Researchers’ publications (TMF)
  • View Item
  •   TechnoRep
  • Tehnološko-metalurški fakultet
  • Radovi istraživača / Researchers’ publications (TMF)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Modeling of the metabolic energy dissipation for restricted tumor growth

No Thumbnail
Authors
Pajić-Lijaković, Ivana
Milivojević, Milan
article (publishedVersion)
Metadata
Show full item record
Abstract
Energy dissipation mostly represents unwanted outcome but in the biochemical processes it may alter the biochemical pathways. However, it is rarely considered in the literature although energy dissipation and its alteration due to the changes in cell microenvironment may improve methods for guiding chemical and biochemical processes in the desired directions. Deeper insight into the changes of metabolic activity of tumor cells exposed to osmotic stress or irradiation may offer the possibility of tumor growth reduction. In this work effects of the osmotic stress and irradiation on the thermodynamical affinity of tumor cells and their damping effects on metabolic energy dissipation were investigated and modeled. Although many various models were applied to consider the tumor restrictive growth they have not considered the metabolic energy dissipation. In this work a pseudo rheological model in the form of "the metabolic spring-pot element" is formulated to describe theoretically the meta...bolic susceptibility of tumor spheroid. This analog model relates the thermodynamical affinity of cell growth with the volume expansion of tumor spheroid under isotropic loading conditions. Spheroid relaxation induces anomalous nature of the metabolic energy dissipation which causes the damping effects on cell growth. The proposed model can be used for determining the metabolic energy "structure" in the context of restrictive cell growth as well as for predicting optimal doses for cancer curing in order to tailor the clinical treatment for each person and each type of cancer.

Keywords:
Micro-environmentally restricted tumor growth / Thermodynamical affinity of cells, damping effects / Metabolic energy dissipation / Mathematical modelling
Source:
Journal of Bioenergetics and Biomembranes, 2017, 49, 5, 381-389
Publisher:
  • Springer/Plenum Publishers, New York
Funding / projects:
  • info:eu-repo/grantAgreement/MESTD/Integrated and Interdisciplinary Research (IIR or III)/46001/RS// (RS-46001)

DOI: 10.1007/s10863-017-9723-y

ISSN: 0145-479X

PubMed: 28852947

WoS: 000413324500004

Scopus: 2-s2.0-85028759738
[ Google Scholar ]
URI
http://TechnoRep.tmf.bg.ac.rs/handle/123456789/3636
Collections
  • Radovi istraživača / Researchers’ publications (TMF)
Institution/Community
Tehnološko-metalurški fakultet

DSpace software copyright © 2002-2015  DuraSpace
About TechnoRep | Send Feedback

OpenAIRERCUB
 

 

All of DSpaceInstitutions/communitiesAuthorsTitlesSubjectsThis institutionAuthorsTitlesSubjects

Statistics

View Usage Statistics

DSpace software copyright © 2002-2015  DuraSpace
About TechnoRep | Send Feedback

OpenAIRERCUB