TechnoRep - Faculty of Technology and Metallurgy Repository
University of Belgrade - Faculty of Technology and Metallurgy
    • English
    • Српски
    • Српски (Serbia)
  • English 
    • English
    • Serbian (Cyrillic)
    • Serbian (Latin)
  • Login
View Item 
  •   TechnoRep
  • Tehnološko-metalurški fakultet
  • Radovi istraživača / Researchers’ publications (TMF)
  • View Item
  •   TechnoRep
  • Tehnološko-metalurški fakultet
  • Radovi istraživača / Researchers’ publications (TMF)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Hydrogels reinforced with nanoclays with improved response rate

Authorized Users Only
2017
Authors
Đonlagić, Jasna
Lancuski, Anica
Nikolić, Marija
Rogan, Jelena
Ostojić, Sanja
Petrović, Zoran
Article (Published version)
Metadata
Show full item record
Abstract
Two series of semiinterpenetrating networks (SIPN) based on linear hydrophilic poly(vinyl alcohol) (PVA) and thermoresponsive poly(N-isopropylacrylamide) (PNIPA), physically crosslinked with inorganic clay, are presented. The hydrogels with different crosslinking densities were prepared by varying the content of clay from 1 to 6 wt % and contained linear interpenetrant, PVA in the range of 0.5-1.5 wt %. The effect of clay content on swelling/deswelling behavior and phase transition in PNIPA gels, as well as the feasibility of reinforcing the gels with high molecular weight PVA, were analyzed. The thermal response of hydrogels, followed by DSC, confirmed that the insertion of hydrophilic PVA did not have a significant effect on the onset of the volume phase transition temperature, while the response was faster. The equilibrium degree of swelling of SIPNs and PNIPA hydrogels was in the range of 979 and decreased with increasing content of clay. The internal morphology and surface wettabi...lity of the hydrogels were investigated by scanning electron microscope analysis and contact angle measurements, respectively. The network structural parameters of the PNIPA and SIPN nanocomposites hydrogels, such as the average molecular weight between crosslinks, M-c, and effective crosslinking density, Ne, were determined by dynamic mechanical analysis.

Keywords:
clay / gels / kinetics / stimuli-sensitive polymers / swelling
Source:
Journal of Applied Polymer Science, 2017, 134, 9
Publisher:
  • Wiley-Blackwell, Hoboken
Funding / projects:
  • Synthesis and characterization of novel functional polymers and polymeric nanocomposites (RS-172062)

DOI: 10.1002/app.44535

ISSN: 0021-8995

WoS: 000388489500013

Scopus: 2-s2.0-84991408243
[ Google Scholar ]
11
9
URI
http://TechnoRep.tmf.bg.ac.rs/handle/123456789/3661
Collections
  • Radovi istraživača / Researchers’ publications (TMF)
Institution/Community
Tehnološko-metalurški fakultet
TY  - JOUR
AU  - Đonlagić, Jasna
AU  - Lancuski, Anica
AU  - Nikolić, Marija
AU  - Rogan, Jelena
AU  - Ostojić, Sanja
AU  - Petrović, Zoran
PY  - 2017
UR  - http://TechnoRep.tmf.bg.ac.rs/handle/123456789/3661
AB  - Two series of semiinterpenetrating networks (SIPN) based on linear hydrophilic poly(vinyl alcohol) (PVA) and thermoresponsive poly(N-isopropylacrylamide) (PNIPA), physically crosslinked with inorganic clay, are presented. The hydrogels with different crosslinking densities were prepared by varying the content of clay from 1 to 6 wt % and contained linear interpenetrant, PVA in the range of 0.5-1.5 wt %. The effect of clay content on swelling/deswelling behavior and phase transition in PNIPA gels, as well as the feasibility of reinforcing the gels with high molecular weight PVA, were analyzed. The thermal response of hydrogels, followed by DSC, confirmed that the insertion of hydrophilic PVA did not have a significant effect on the onset of the volume phase transition temperature, while the response was faster. The equilibrium degree of swelling of SIPNs and PNIPA hydrogels was in the range of 979 and decreased with increasing content of clay. The internal morphology and surface wettability of the hydrogels were investigated by scanning electron microscope analysis and contact angle measurements, respectively. The network structural parameters of the PNIPA and SIPN nanocomposites hydrogels, such as the average molecular weight between crosslinks, M-c, and effective crosslinking density, Ne, were determined by dynamic mechanical analysis.
PB  - Wiley-Blackwell, Hoboken
T2  - Journal of Applied Polymer Science
T1  - Hydrogels reinforced with nanoclays with improved response rate
IS  - 9
VL  - 134
DO  - 10.1002/app.44535
ER  - 
@article{
author = "Đonlagić, Jasna and Lancuski, Anica and Nikolić, Marija and Rogan, Jelena and Ostojić, Sanja and Petrović, Zoran",
year = "2017",
abstract = "Two series of semiinterpenetrating networks (SIPN) based on linear hydrophilic poly(vinyl alcohol) (PVA) and thermoresponsive poly(N-isopropylacrylamide) (PNIPA), physically crosslinked with inorganic clay, are presented. The hydrogels with different crosslinking densities were prepared by varying the content of clay from 1 to 6 wt % and contained linear interpenetrant, PVA in the range of 0.5-1.5 wt %. The effect of clay content on swelling/deswelling behavior and phase transition in PNIPA gels, as well as the feasibility of reinforcing the gels with high molecular weight PVA, were analyzed. The thermal response of hydrogels, followed by DSC, confirmed that the insertion of hydrophilic PVA did not have a significant effect on the onset of the volume phase transition temperature, while the response was faster. The equilibrium degree of swelling of SIPNs and PNIPA hydrogels was in the range of 979 and decreased with increasing content of clay. The internal morphology and surface wettability of the hydrogels were investigated by scanning electron microscope analysis and contact angle measurements, respectively. The network structural parameters of the PNIPA and SIPN nanocomposites hydrogels, such as the average molecular weight between crosslinks, M-c, and effective crosslinking density, Ne, were determined by dynamic mechanical analysis.",
publisher = "Wiley-Blackwell, Hoboken",
journal = "Journal of Applied Polymer Science",
title = "Hydrogels reinforced with nanoclays with improved response rate",
number = "9",
volume = "134",
doi = "10.1002/app.44535"
}
Đonlagić, J., Lancuski, A., Nikolić, M., Rogan, J., Ostojić, S.,& Petrović, Z.. (2017). Hydrogels reinforced with nanoclays with improved response rate. in Journal of Applied Polymer Science
Wiley-Blackwell, Hoboken., 134(9).
https://doi.org/10.1002/app.44535
Đonlagić J, Lancuski A, Nikolić M, Rogan J, Ostojić S, Petrović Z. Hydrogels reinforced with nanoclays with improved response rate. in Journal of Applied Polymer Science. 2017;134(9).
doi:10.1002/app.44535 .
Đonlagić, Jasna, Lancuski, Anica, Nikolić, Marija, Rogan, Jelena, Ostojić, Sanja, Petrović, Zoran, "Hydrogels reinforced with nanoclays with improved response rate" in Journal of Applied Polymer Science, 134, no. 9 (2017),
https://doi.org/10.1002/app.44535 . .

DSpace software copyright © 2002-2015  DuraSpace
About TechnoRep | Send Feedback

OpenAIRERCUB
 

 

All of DSpaceInstitutions/communitiesAuthorsTitlesSubjectsThis institutionAuthorsTitlesSubjects

Statistics

View Usage Statistics

DSpace software copyright © 2002-2015  DuraSpace
About TechnoRep | Send Feedback

OpenAIRERCUB