TechnoRep - Faculty of Technology and Metallurgy Repository
University of Belgrade - Faculty of Technology and Metallurgy
    • English
    • Српски
    • Српски (Serbia)
  • English 
    • English
    • Serbian (Cyrillic)
    • Serbian (Latin)
  • Login
View Item 
  •   TechnoRep
  • Tehnološko-metalurški fakultet
  • Radovi istraživača / Researchers’ publications (TMF)
  • View Item
  •   TechnoRep
  • Tehnološko-metalurški fakultet
  • Radovi istraživača / Researchers’ publications (TMF)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Tuning of BiFeO3 multiferroic properties by light doping with Nb

Authorized Users Only
2018
Authors
Radojković, Aleksandar
Luković-Golić, Danijela
Ćirković, Jovana
Marinković-Stanojević, Zorica
Pajić, Damir
Torić, Filip
Dapčević, Aleksandra
Vulić, Predrag
Branković, Zorica
Branković, Goran
Article (Published version)
Metadata
Show full item record
Abstract
Bulk ceramic samples of BiFeO3 were light doped (up to 1%) with Nb5+ in the place of Fe3+ (B-site doping) and their multiferroic properties were investigated using XRD, SEM, polarization (PMTS) and magnetization (SQUID) techniques. It is shown that even the small percentages of doping can notably change electric and magnetic behavior. Electric conductivity differs by two orders of magnitude between samples doped with 0.2% and 1% Nb. The ferroelectric behavior strongly depended on conduction mechanism, and transition from space-charge-limited current (SCLC) conduction to trap-filled limited (TFL) conduction regime reflected on a change in hysteresis patterns, particularly for the samples with 0.2% and 0.5% Nb. Separation of ZFC-FC magnetization curves occurred for all Nb concentrations and increased with Nb doping. Weak ferromagnetic behavior and the increase of remnant magnetization with Nb concentration was observed from the hysteresis measurements. Coercive field changed drastically ...compared to the pure BiFeO3, namely, the sample with 1% Nb exhibited very high coercive magnetic field of 10 kOe.

Keywords:
Bismuth ferrite / Ferroelectric properties C / Magnetic properties C
Source:
Ceramics International, 2018, 44, 14, 16739-16744
Publisher:
  • Elsevier Sci Ltd, Oxford
Funding / projects:
  • Zero- to Three-Dimensional Nanostructures for Application in Electronics and Renewable Energy Sources: Synthesis, Characterization and Processing (RS-45007)
  • Croatian Science Foundation [UIP-2014-09-8276]

DOI: 10.1016/j.ceramint.2018.06.103

ISSN: 0272-8842

WoS: 000442714100079

Scopus: 2-s2.0-85048728559
[ Google Scholar ]
10
9
URI
http://TechnoRep.tmf.bg.ac.rs/handle/123456789/3856
Collections
  • Radovi istraživača / Researchers’ publications (TMF)
Institution/Community
Tehnološko-metalurški fakultet
TY  - JOUR
AU  - Radojković, Aleksandar
AU  - Luković-Golić, Danijela
AU  - Ćirković, Jovana
AU  - Marinković-Stanojević, Zorica
AU  - Pajić, Damir
AU  - Torić, Filip
AU  - Dapčević, Aleksandra
AU  - Vulić, Predrag
AU  - Branković, Zorica
AU  - Branković, Goran
PY  - 2018
UR  - http://TechnoRep.tmf.bg.ac.rs/handle/123456789/3856
AB  - Bulk ceramic samples of BiFeO3 were light doped (up to 1%) with Nb5+ in the place of Fe3+ (B-site doping) and their multiferroic properties were investigated using XRD, SEM, polarization (PMTS) and magnetization (SQUID) techniques. It is shown that even the small percentages of doping can notably change electric and magnetic behavior. Electric conductivity differs by two orders of magnitude between samples doped with 0.2% and 1% Nb. The ferroelectric behavior strongly depended on conduction mechanism, and transition from space-charge-limited current (SCLC) conduction to trap-filled limited (TFL) conduction regime reflected on a change in hysteresis patterns, particularly for the samples with 0.2% and 0.5% Nb. Separation of ZFC-FC magnetization curves occurred for all Nb concentrations and increased with Nb doping. Weak ferromagnetic behavior and the increase of remnant magnetization with Nb concentration was observed from the hysteresis measurements. Coercive field changed drastically compared to the pure BiFeO3, namely, the sample with 1% Nb exhibited very high coercive magnetic field of 10 kOe.
PB  - Elsevier Sci Ltd, Oxford
T2  - Ceramics International
T1  - Tuning of BiFeO3 multiferroic properties by light doping with Nb
EP  - 16744
IS  - 14
SP  - 16739
VL  - 44
DO  - 10.1016/j.ceramint.2018.06.103
ER  - 
@article{
author = "Radojković, Aleksandar and Luković-Golić, Danijela and Ćirković, Jovana and Marinković-Stanojević, Zorica and Pajić, Damir and Torić, Filip and Dapčević, Aleksandra and Vulić, Predrag and Branković, Zorica and Branković, Goran",
year = "2018",
abstract = "Bulk ceramic samples of BiFeO3 were light doped (up to 1%) with Nb5+ in the place of Fe3+ (B-site doping) and their multiferroic properties were investigated using XRD, SEM, polarization (PMTS) and magnetization (SQUID) techniques. It is shown that even the small percentages of doping can notably change electric and magnetic behavior. Electric conductivity differs by two orders of magnitude between samples doped with 0.2% and 1% Nb. The ferroelectric behavior strongly depended on conduction mechanism, and transition from space-charge-limited current (SCLC) conduction to trap-filled limited (TFL) conduction regime reflected on a change in hysteresis patterns, particularly for the samples with 0.2% and 0.5% Nb. Separation of ZFC-FC magnetization curves occurred for all Nb concentrations and increased with Nb doping. Weak ferromagnetic behavior and the increase of remnant magnetization with Nb concentration was observed from the hysteresis measurements. Coercive field changed drastically compared to the pure BiFeO3, namely, the sample with 1% Nb exhibited very high coercive magnetic field of 10 kOe.",
publisher = "Elsevier Sci Ltd, Oxford",
journal = "Ceramics International",
title = "Tuning of BiFeO3 multiferroic properties by light doping with Nb",
pages = "16744-16739",
number = "14",
volume = "44",
doi = "10.1016/j.ceramint.2018.06.103"
}
Radojković, A., Luković-Golić, D., Ćirković, J., Marinković-Stanojević, Z., Pajić, D., Torić, F., Dapčević, A., Vulić, P., Branković, Z.,& Branković, G.. (2018). Tuning of BiFeO3 multiferroic properties by light doping with Nb. in Ceramics International
Elsevier Sci Ltd, Oxford., 44(14), 16739-16744.
https://doi.org/10.1016/j.ceramint.2018.06.103
Radojković A, Luković-Golić D, Ćirković J, Marinković-Stanojević Z, Pajić D, Torić F, Dapčević A, Vulić P, Branković Z, Branković G. Tuning of BiFeO3 multiferroic properties by light doping with Nb. in Ceramics International. 2018;44(14):16739-16744.
doi:10.1016/j.ceramint.2018.06.103 .
Radojković, Aleksandar, Luković-Golić, Danijela, Ćirković, Jovana, Marinković-Stanojević, Zorica, Pajić, Damir, Torić, Filip, Dapčević, Aleksandra, Vulić, Predrag, Branković, Zorica, Branković, Goran, "Tuning of BiFeO3 multiferroic properties by light doping with Nb" in Ceramics International, 44, no. 14 (2018):16739-16744,
https://doi.org/10.1016/j.ceramint.2018.06.103 . .

DSpace software copyright © 2002-2015  DuraSpace
About TechnoRep | Send Feedback

OpenAIRERCUB
 

 

All of DSpaceInstitutions/communitiesAuthorsTitlesSubjectsThis institutionAuthorsTitlesSubjects

Statistics

View Usage Statistics

DSpace software copyright © 2002-2015  DuraSpace
About TechnoRep | Send Feedback

OpenAIRERCUB