TechnoRep - Faculty of Technology and Metallurgy Repository
University of Belgrade - Faculty of Technology and Metallurgy
    • English
    • Српски
    • Српски (Serbia)
  • English 
    • English
    • Serbian (Cyrillic)
    • Serbian (Latin)
  • Login
View Item 
  •   TechnoRep
  • Tehnološko-metalurški fakultet
  • Radovi istraživača / Researchers’ publications (TMF)
  • View Item
  •   TechnoRep
  • Tehnološko-metalurški fakultet
  • Radovi istraživača / Researchers’ publications (TMF)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Achieving high antimicrobial activity: Composite alginate hydrogel beads releasing activated charcoal with an immobilized active agent

Authorized Users Only
2018
Authors
Osmokrović, Andrea
Jančić, Ivan
Vunduk, Jovana
Petrović, Predrag
Milenković, Marina
Obradović, Bojana
Article (Published version)
Metadata
Show full item record
Abstract
New composites based on Ca-alginate hydrogels were produced that release activated charcoal (AC) particles with adsorbed povidone iodine (PVP-I) as a model antimicrobial substance in a physiological-like environment. Composite beads with different alginate (0.5-1.5% w/w) and AC (1-20% w/w) concentrations were analyzed by FE-SEM and characterized regarding textural parameters, swelling, and AC release kinetics. PVP-I was easily adsorbed onto AC particles within the optimized beads (0.5% w/w alginate, 20% w/w AC) as indicated by UV-vis spectroscopy, EDX and FT-IR analyses. The obtained beads have shown strong bactericidal effects against two standard bacterial strains (Staphylococcus aureus and Pseudomonas aeruginosa) and clinical multi-resistant wound isolates (MRSA, Escherichia coli, Pseudomonas aeruginosa, Enterococcus faecalis and Proteus mirabilis) and, at the same time, exhibited negligible PVP-I desorption in physiological saline solution. Thus, the obtained composites could provi...de utilization of potent antiseptics such as iodine, in wound dressings, without the concern of systemic absorption.

Keywords:
Alginate / Activated charcoal / Povidone iodine / Antibacterial activity / Wound dressing
Source:
Carbohydrate Polymers, 2018, 196, 279-288
Publisher:
  • Elsevier Sci Ltd, Oxford
Funding / projects:
  • Synthesis, processing and applications of nanostructured multifunctional materials with defined properties (RS-45019)

DOI: 10.1016/j.carbpol.2018.05.045

ISSN: 0144-8617

PubMed: 29891298

WoS: 000436571600032

Scopus: 2-s2.0-85047260873
[ Google Scholar ]
24
17
URI
http://TechnoRep.tmf.bg.ac.rs/handle/123456789/3859
Collections
  • Radovi istraživača / Researchers’ publications (TMF)
  • Radovi istraživača (Inovacioni centar) / Researchers’ publications (Innovation Centre)
Institution/Community
Tehnološko-metalurški fakultet
TY  - JOUR
AU  - Osmokrović, Andrea
AU  - Jančić, Ivan
AU  - Vunduk, Jovana
AU  - Petrović, Predrag
AU  - Milenković, Marina
AU  - Obradović, Bojana
PY  - 2018
UR  - http://TechnoRep.tmf.bg.ac.rs/handle/123456789/3859
AB  - New composites based on Ca-alginate hydrogels were produced that release activated charcoal (AC) particles with adsorbed povidone iodine (PVP-I) as a model antimicrobial substance in a physiological-like environment. Composite beads with different alginate (0.5-1.5% w/w) and AC (1-20% w/w) concentrations were analyzed by FE-SEM and characterized regarding textural parameters, swelling, and AC release kinetics. PVP-I was easily adsorbed onto AC particles within the optimized beads (0.5% w/w alginate, 20% w/w AC) as indicated by UV-vis spectroscopy, EDX and FT-IR analyses. The obtained beads have shown strong bactericidal effects against two standard bacterial strains (Staphylococcus aureus and Pseudomonas aeruginosa) and clinical multi-resistant wound isolates (MRSA, Escherichia coli, Pseudomonas aeruginosa, Enterococcus faecalis and Proteus mirabilis) and, at the same time, exhibited negligible PVP-I desorption in physiological saline solution. Thus, the obtained composites could provide utilization of potent antiseptics such as iodine, in wound dressings, without the concern of systemic absorption.
PB  - Elsevier Sci Ltd, Oxford
T2  - Carbohydrate Polymers
T1  - Achieving high antimicrobial activity: Composite alginate hydrogel beads releasing activated charcoal with an immobilized active agent
EP  - 288
SP  - 279
VL  - 196
DO  - 10.1016/j.carbpol.2018.05.045
ER  - 
@article{
author = "Osmokrović, Andrea and Jančić, Ivan and Vunduk, Jovana and Petrović, Predrag and Milenković, Marina and Obradović, Bojana",
year = "2018",
abstract = "New composites based on Ca-alginate hydrogels were produced that release activated charcoal (AC) particles with adsorbed povidone iodine (PVP-I) as a model antimicrobial substance in a physiological-like environment. Composite beads with different alginate (0.5-1.5% w/w) and AC (1-20% w/w) concentrations were analyzed by FE-SEM and characterized regarding textural parameters, swelling, and AC release kinetics. PVP-I was easily adsorbed onto AC particles within the optimized beads (0.5% w/w alginate, 20% w/w AC) as indicated by UV-vis spectroscopy, EDX and FT-IR analyses. The obtained beads have shown strong bactericidal effects against two standard bacterial strains (Staphylococcus aureus and Pseudomonas aeruginosa) and clinical multi-resistant wound isolates (MRSA, Escherichia coli, Pseudomonas aeruginosa, Enterococcus faecalis and Proteus mirabilis) and, at the same time, exhibited negligible PVP-I desorption in physiological saline solution. Thus, the obtained composites could provide utilization of potent antiseptics such as iodine, in wound dressings, without the concern of systemic absorption.",
publisher = "Elsevier Sci Ltd, Oxford",
journal = "Carbohydrate Polymers",
title = "Achieving high antimicrobial activity: Composite alginate hydrogel beads releasing activated charcoal with an immobilized active agent",
pages = "288-279",
volume = "196",
doi = "10.1016/j.carbpol.2018.05.045"
}
Osmokrović, A., Jančić, I., Vunduk, J., Petrović, P., Milenković, M.,& Obradović, B.. (2018). Achieving high antimicrobial activity: Composite alginate hydrogel beads releasing activated charcoal with an immobilized active agent. in Carbohydrate Polymers
Elsevier Sci Ltd, Oxford., 196, 279-288.
https://doi.org/10.1016/j.carbpol.2018.05.045
Osmokrović A, Jančić I, Vunduk J, Petrović P, Milenković M, Obradović B. Achieving high antimicrobial activity: Composite alginate hydrogel beads releasing activated charcoal with an immobilized active agent. in Carbohydrate Polymers. 2018;196:279-288.
doi:10.1016/j.carbpol.2018.05.045 .
Osmokrović, Andrea, Jančić, Ivan, Vunduk, Jovana, Petrović, Predrag, Milenković, Marina, Obradović, Bojana, "Achieving high antimicrobial activity: Composite alginate hydrogel beads releasing activated charcoal with an immobilized active agent" in Carbohydrate Polymers, 196 (2018):279-288,
https://doi.org/10.1016/j.carbpol.2018.05.045 . .

Related items

Showing items related by title, author, creator and subject.

  • Physical and mathematical models of an inert macroelectrode modified with active hemispherical microelectrodes 

    Popov, Konstantin I.; Živković, Predrag M.; Grgur, Branimir (Pergamon-Elsevier Science Ltd, Oxford, 2007)
  • Influence of lyophilized Thymus serpyllum L. extracts on the gastrointestinal system: Spasmolytic, antimicrobial and antioxidant properties 

    Jovanović, Aleksandra; Petrović, Predrag; Zdunic, Gordana M.; Savikin, Katarina P.; Kitic, Dusanka; Đorđević, Verica; Bugarski, Branko; Brankovic, Suzana (South African Journal of Botany, 2021)
  • Structure-activity relationships of 3-substituted-5,5-diphenylhydantoins as potential antiproliferative and antimicrobial agents / Uticaj strukture na antiproliferativnu i antibakterijsku aktivnost 3-supstituisanih-5,5-difenilhidantoina 

    Trišović, Nemanja; Božić, Bojan; Obradović, Ana; Stefanović, Olgica; Marković, Snežana; Čomić, Ljiljana; Božić, Biljana; Ušćumlić, Gordana (Serbian Chemical Society, Belgrade, 2011)

DSpace software copyright © 2002-2015  DuraSpace
About TechnoRep | Send Feedback

OpenAIRERCUB
 

 

All of DSpaceInstitutions/communitiesAuthorsTitlesSubjectsThis institutionAuthorsTitlesSubjects

Statistics

View Usage Statistics

DSpace software copyright © 2002-2015  DuraSpace
About TechnoRep | Send Feedback

OpenAIRERCUB