TechnoRep - Faculty of Technology and Metallurgy Repository
University of Belgrade - Faculty of Technology and Metallurgy
    • English
    • Српски
    • Српски (Serbia)
  • English 
    • English
    • Serbian (Cyrillic)
    • Serbian (Latin)
  • Login
View Item 
  •   TechnoRep
  • Tehnološko-metalurški fakultet
  • Radovi istraživača / Researchers’ publications (TMF)
  • View Item
  •   TechnoRep
  • Tehnološko-metalurški fakultet
  • Radovi istraživača / Researchers’ publications (TMF)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Floating Photocatalyst Based on Poly(epsilon-caprolactone) Foam and TiO2 Nanoparticles for Removal of Textile Dyes

Authorized Users Only
2018
Authors
Marković, Darka
Milovanović, Stoja
Radovanović, Željko
Žižović, Irena
Šaponjić, Zoran
Radetić, Maja
Article (Published version)
Metadata
Show full item record
Abstract
This study discusses a novel approach for fabrication of floating photocatalyst which can be efficiently exploited for photodegradation of dyes in aqueous solutions. A fabrication of the floating photocatalyst consisted of two steps: transformation of the poly(epsilon-caprolactone) beads (PCLb) into poly(epsilon-caprolactone) foam (PCLf) with porous structure in supercritical carbon-dioxide and subsequent loading of PCLf with TiO2 nanoparticles (NPs). Morphological characterization of the PCLf before and after TiO2 NPs loading was carried out by FESEM. The presence of titanium on the surface and inside the PCLf was detected by EDX. Photocatalytical activity of the floating photocatalyst was investigated in aqueous solution of textile dyes C.I. Acid Orange 7 (AO7) and C.I. Basic Yellow 28 (BY28) which were exposed to lamp that simulates the sun light. In addition to sustainable floatability for a long period of time, developed floating photocatalyst exhibited high rate of photodegradati...on since the complete discoloration of AO7 and BY28 solutions and photocatalysts alone occurred after 300 and 180 min of illumination, respectively. Its photocatalytic activity was preserved after three repeated photodegradation cycles with unchanged chemical structure that was confirmed by FTIR analysis.

Keywords:
Floating photocatalyst / Polycaprolactone / TiO2 nanoparticles / Dye photodegradation / Supercritical foaming
Source:
Fibers and Polymers, 2018, 19, 6, 1219-1227
Publisher:
  • Korean Fiber Soc, Seoul
Funding / projects:
  • Size-, shape- and structure- dependent properties of nanoparticles and nanocomposites (RS-172056)
  • Materials of Reduced Dimensions for Efficient Light Harvesting and Energy conversion (RS-45020)

DOI: 10.1007/s12221-018-8148-5

ISSN: 1229-9197

WoS: 000437774000009

Scopus: 2-s2.0-85049563576
[ Google Scholar ]
9
5
URI
http://TechnoRep.tmf.bg.ac.rs/handle/123456789/3861
Collections
  • Radovi istraživača / Researchers’ publications (TMF)
  • Radovi istraživača (Inovacioni centar) / Researchers’ publications (Innovation Centre)
Institution/Community
Tehnološko-metalurški fakultet
TY  - JOUR
AU  - Marković, Darka
AU  - Milovanović, Stoja
AU  - Radovanović, Željko
AU  - Žižović, Irena
AU  - Šaponjić, Zoran
AU  - Radetić, Maja
PY  - 2018
UR  - http://TechnoRep.tmf.bg.ac.rs/handle/123456789/3861
AB  - This study discusses a novel approach for fabrication of floating photocatalyst which can be efficiently exploited for photodegradation of dyes in aqueous solutions. A fabrication of the floating photocatalyst consisted of two steps: transformation of the poly(epsilon-caprolactone) beads (PCLb) into poly(epsilon-caprolactone) foam (PCLf) with porous structure in supercritical carbon-dioxide and subsequent loading of PCLf with TiO2 nanoparticles (NPs). Morphological characterization of the PCLf before and after TiO2 NPs loading was carried out by FESEM. The presence of titanium on the surface and inside the PCLf was detected by EDX. Photocatalytical activity of the floating photocatalyst was investigated in aqueous solution of textile dyes C.I. Acid Orange 7 (AO7) and C.I. Basic Yellow 28 (BY28) which were exposed to lamp that simulates the sun light. In addition to sustainable floatability for a long period of time, developed floating photocatalyst exhibited high rate of photodegradation since the complete discoloration of AO7 and BY28 solutions and photocatalysts alone occurred after 300 and 180 min of illumination, respectively. Its photocatalytic activity was preserved after three repeated photodegradation cycles with unchanged chemical structure that was confirmed by FTIR analysis.
PB  - Korean Fiber Soc, Seoul
T2  - Fibers and Polymers
T1  - Floating Photocatalyst Based on Poly(epsilon-caprolactone) Foam and TiO2 Nanoparticles for Removal of Textile Dyes
EP  - 1227
IS  - 6
SP  - 1219
VL  - 19
DO  - 10.1007/s12221-018-8148-5
ER  - 
@article{
author = "Marković, Darka and Milovanović, Stoja and Radovanović, Željko and Žižović, Irena and Šaponjić, Zoran and Radetić, Maja",
year = "2018",
abstract = "This study discusses a novel approach for fabrication of floating photocatalyst which can be efficiently exploited for photodegradation of dyes in aqueous solutions. A fabrication of the floating photocatalyst consisted of two steps: transformation of the poly(epsilon-caprolactone) beads (PCLb) into poly(epsilon-caprolactone) foam (PCLf) with porous structure in supercritical carbon-dioxide and subsequent loading of PCLf with TiO2 nanoparticles (NPs). Morphological characterization of the PCLf before and after TiO2 NPs loading was carried out by FESEM. The presence of titanium on the surface and inside the PCLf was detected by EDX. Photocatalytical activity of the floating photocatalyst was investigated in aqueous solution of textile dyes C.I. Acid Orange 7 (AO7) and C.I. Basic Yellow 28 (BY28) which were exposed to lamp that simulates the sun light. In addition to sustainable floatability for a long period of time, developed floating photocatalyst exhibited high rate of photodegradation since the complete discoloration of AO7 and BY28 solutions and photocatalysts alone occurred after 300 and 180 min of illumination, respectively. Its photocatalytic activity was preserved after three repeated photodegradation cycles with unchanged chemical structure that was confirmed by FTIR analysis.",
publisher = "Korean Fiber Soc, Seoul",
journal = "Fibers and Polymers",
title = "Floating Photocatalyst Based on Poly(epsilon-caprolactone) Foam and TiO2 Nanoparticles for Removal of Textile Dyes",
pages = "1227-1219",
number = "6",
volume = "19",
doi = "10.1007/s12221-018-8148-5"
}
Marković, D., Milovanović, S., Radovanović, Ž., Žižović, I., Šaponjić, Z.,& Radetić, M.. (2018). Floating Photocatalyst Based on Poly(epsilon-caprolactone) Foam and TiO2 Nanoparticles for Removal of Textile Dyes. in Fibers and Polymers
Korean Fiber Soc, Seoul., 19(6), 1219-1227.
https://doi.org/10.1007/s12221-018-8148-5
Marković D, Milovanović S, Radovanović Ž, Žižović I, Šaponjić Z, Radetić M. Floating Photocatalyst Based on Poly(epsilon-caprolactone) Foam and TiO2 Nanoparticles for Removal of Textile Dyes. in Fibers and Polymers. 2018;19(6):1219-1227.
doi:10.1007/s12221-018-8148-5 .
Marković, Darka, Milovanović, Stoja, Radovanović, Željko, Žižović, Irena, Šaponjić, Zoran, Radetić, Maja, "Floating Photocatalyst Based on Poly(epsilon-caprolactone) Foam and TiO2 Nanoparticles for Removal of Textile Dyes" in Fibers and Polymers, 19, no. 6 (2018):1219-1227,
https://doi.org/10.1007/s12221-018-8148-5 . .

DSpace software copyright © 2002-2015  DuraSpace
About TechnoRep | Send Feedback

OpenAIRERCUB
 

 

All of DSpaceInstitutions/communitiesAuthorsTitlesSubjectsThis institutionAuthorsTitlesSubjects

Statistics

View Usage Statistics

DSpace software copyright © 2002-2015  DuraSpace
About TechnoRep | Send Feedback

OpenAIRERCUB