TechnoRep - Faculty of Technology and Metallurgy Repository
University of Belgrade - Faculty of Technology and Metallurgy
    • English
    • Српски
    • Српски (Serbia)
  • English 
    • English
    • Serbian (Cyrillic)
    • Serbian (Latin)
  • Login
View Item 
  •   TechnoRep
  • Tehnološko-metalurški fakultet
  • Radovi istraživača / Researchers’ publications (TMF)
  • View Item
  •   TechnoRep
  • Tehnološko-metalurški fakultet
  • Radovi istraživača / Researchers’ publications (TMF)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Silver/poly(vinyl alcohol)/chitosan/graphene hydrogels - Synthesis, biological and physicochemical properties and silver release kinetics

Authorized Users Only
2018
Authors
Nešović, Katarina
Janković, Ana
Kojić, Vesna
Vukašinović-Sekulić, Maja
Perić-Grujić, Aleksandra
Rhee, Kyong Yop
Mišković-Stanković, Vesna
Article (Published version)
Metadata
Show full item record
Abstract
This study presents the synthesis of novel silver/poly(vinyl alcohol)/chitosan/graphene (Ag/PVA/CHI/Gr) nanocomposite hydrogels by in situ electrochemical reduction of silver ions in the hydrogel matrix and their thorough characterization by UV-visible and Raman spectroscopies, field-emission scanning electron microscopy (FE-SEM), X-ray photoelectron spectroscopy (XPS), and silver release measurements. The influence of chitosan content on the incorporation and stabilization of silver nanoparticles (AgNPs) was investigated, and we found that hydrogels with higher chitosan content contain higher amounts of AgNPs. In addition, the cytotoxicity and antibacterial activity of Ag/PVA/CHI/Gr nanocomposite hydrogels were evaluated. Based on in vitro investigations, the obtained materials exhibit diffusion-controlled release profiles over 28 days, strong antibacterial activity against Staphylococcus aureus and Escherichia coli bacterial strains, and no cytotoxicity toward human and mice fibrobla...st cell lines.

Keywords:
Polymer-matrix composites (PMCs) / Nano-structures / Surface properties / Electron microscopy
Source:
Composites Part B-Engineering, 2018, 154, 175-185
Publisher:
  • Elsevier Sci Ltd, Oxford
Funding / projects:
  • Synthesis, processing and applications of nanostructured multifunctional materials with defined properties (RS-45019)
  • Basic Science Research Program of the Ministry of Education, Science and Technology of Korea [2018R1A2B5A02023190]

DOI: 10.1016/j.compositesb.2018.08.005

ISSN: 1359-8368

WoS: 000449904300018

Scopus: 2-s2.0-85051107977
[ Google Scholar ]
46
33
URI
http://TechnoRep.tmf.bg.ac.rs/handle/123456789/3942
Collections
  • Radovi istraživača / Researchers’ publications (TMF)
  • Radovi istraživača (Inovacioni centar) / Researchers’ publications (Innovation Centre)
Institution/Community
Tehnološko-metalurški fakultet
TY  - JOUR
AU  - Nešović, Katarina
AU  - Janković, Ana
AU  - Kojić, Vesna
AU  - Vukašinović-Sekulić, Maja
AU  - Perić-Grujić, Aleksandra
AU  - Rhee, Kyong Yop
AU  - Mišković-Stanković, Vesna
PY  - 2018
UR  - http://TechnoRep.tmf.bg.ac.rs/handle/123456789/3942
AB  - This study presents the synthesis of novel silver/poly(vinyl alcohol)/chitosan/graphene (Ag/PVA/CHI/Gr) nanocomposite hydrogels by in situ electrochemical reduction of silver ions in the hydrogel matrix and their thorough characterization by UV-visible and Raman spectroscopies, field-emission scanning electron microscopy (FE-SEM), X-ray photoelectron spectroscopy (XPS), and silver release measurements. The influence of chitosan content on the incorporation and stabilization of silver nanoparticles (AgNPs) was investigated, and we found that hydrogels with higher chitosan content contain higher amounts of AgNPs. In addition, the cytotoxicity and antibacterial activity of Ag/PVA/CHI/Gr nanocomposite hydrogels were evaluated. Based on in vitro investigations, the obtained materials exhibit diffusion-controlled release profiles over 28 days, strong antibacterial activity against Staphylococcus aureus and Escherichia coli bacterial strains, and no cytotoxicity toward human and mice fibroblast cell lines.
PB  - Elsevier Sci Ltd, Oxford
T2  - Composites Part B-Engineering
T1  - Silver/poly(vinyl alcohol)/chitosan/graphene hydrogels - Synthesis, biological and physicochemical properties and silver release kinetics
EP  - 185
SP  - 175
VL  - 154
DO  - 10.1016/j.compositesb.2018.08.005
ER  - 
@article{
author = "Nešović, Katarina and Janković, Ana and Kojić, Vesna and Vukašinović-Sekulić, Maja and Perić-Grujić, Aleksandra and Rhee, Kyong Yop and Mišković-Stanković, Vesna",
year = "2018",
abstract = "This study presents the synthesis of novel silver/poly(vinyl alcohol)/chitosan/graphene (Ag/PVA/CHI/Gr) nanocomposite hydrogels by in situ electrochemical reduction of silver ions in the hydrogel matrix and their thorough characterization by UV-visible and Raman spectroscopies, field-emission scanning electron microscopy (FE-SEM), X-ray photoelectron spectroscopy (XPS), and silver release measurements. The influence of chitosan content on the incorporation and stabilization of silver nanoparticles (AgNPs) was investigated, and we found that hydrogels with higher chitosan content contain higher amounts of AgNPs. In addition, the cytotoxicity and antibacterial activity of Ag/PVA/CHI/Gr nanocomposite hydrogels were evaluated. Based on in vitro investigations, the obtained materials exhibit diffusion-controlled release profiles over 28 days, strong antibacterial activity against Staphylococcus aureus and Escherichia coli bacterial strains, and no cytotoxicity toward human and mice fibroblast cell lines.",
publisher = "Elsevier Sci Ltd, Oxford",
journal = "Composites Part B-Engineering",
title = "Silver/poly(vinyl alcohol)/chitosan/graphene hydrogels - Synthesis, biological and physicochemical properties and silver release kinetics",
pages = "185-175",
volume = "154",
doi = "10.1016/j.compositesb.2018.08.005"
}
Nešović, K., Janković, A., Kojić, V., Vukašinović-Sekulić, M., Perić-Grujić, A., Rhee, K. Y.,& Mišković-Stanković, V.. (2018). Silver/poly(vinyl alcohol)/chitosan/graphene hydrogels - Synthesis, biological and physicochemical properties and silver release kinetics. in Composites Part B-Engineering
Elsevier Sci Ltd, Oxford., 154, 175-185.
https://doi.org/10.1016/j.compositesb.2018.08.005
Nešović K, Janković A, Kojić V, Vukašinović-Sekulić M, Perić-Grujić A, Rhee KY, Mišković-Stanković V. Silver/poly(vinyl alcohol)/chitosan/graphene hydrogels - Synthesis, biological and physicochemical properties and silver release kinetics. in Composites Part B-Engineering. 2018;154:175-185.
doi:10.1016/j.compositesb.2018.08.005 .
Nešović, Katarina, Janković, Ana, Kojić, Vesna, Vukašinović-Sekulić, Maja, Perić-Grujić, Aleksandra, Rhee, Kyong Yop, Mišković-Stanković, Vesna, "Silver/poly(vinyl alcohol)/chitosan/graphene hydrogels - Synthesis, biological and physicochemical properties and silver release kinetics" in Composites Part B-Engineering, 154 (2018):175-185,
https://doi.org/10.1016/j.compositesb.2018.08.005 . .

DSpace software copyright © 2002-2015  DuraSpace
About TechnoRep | Send Feedback

OpenAIRERCUB
 

 

All of DSpaceInstitutions/communitiesAuthorsTitlesSubjectsThis institutionAuthorsTitlesSubjects

Statistics

View Usage Statistics

DSpace software copyright © 2002-2015  DuraSpace
About TechnoRep | Send Feedback

OpenAIRERCUB