TechnoRep - Faculty of Technology and Metallurgy Repository
University of Belgrade - Faculty of Technology and Metallurgy
    • English
    • Српски
    • Српски (Serbia)
  • English 
    • English
    • Serbian (Cyrillic)
    • Serbian (Latin)
  • Login
View Item 
  •   TechnoRep
  • Tehnološko-metalurški fakultet
  • Radovi istraživača / Researchers’ publications (TMF)
  • View Item
  •   TechnoRep
  • Tehnološko-metalurški fakultet
  • Radovi istraživača / Researchers’ publications (TMF)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Structure and photocatalytic properties of sintered TiO2 nanotube arrays

Thumbnail
2018
4029.pdf (1.116Mb)
Authors
Vujančević, Jelena
Bjelajac, Anđelika
Ćirković, Jovana
Pavlović, Vera P.
Horvath, Endre
Forro, Laszlo
Vlahović, Branislav
Mitrić, Miodrag
Janaćković, Đorđe
Pavlović, Vladimir B.
Article (Published version)
Metadata
Show full item record
Abstract
One-dimensional (1D) TiO2 nanotubes perpendicular to the substrate were obtained by electrochemical oxidation of titanium foil in an acid electrolyte. In order to alter the crystallinity and the morphology of films the as-anodized amorphous TiO2 nanotube films were sintered at elevated temperatures. The evolution of the morphology was visualized via scanning electron microscopy (SEM), while the crystalline structure was investigated by Xray diffraction (XRD) and Raman spectroscopy. The chemical composition was studied by Xray photoelectron spectroscopy (XPS). The effects of crystallinity and morphology of TiO2 nanotube (NTs) films on photocatalytic degradation of methyl orange (MO) in an aqueous solution under UV light irradiation were also investigated. The TiO2 nanotubes sintered at 650 degrees C for 30 min had the highest degree of crystallinity and exhibited the best photocatalytic activity among the studied TiO2 nanotube films.
Keywords:
Titanium dioxide / Anodization / Sintering / Crystal phase / Photocatalysis
Source:
Science of Sintering, 2018, 50, 1, 39-50
Publisher:
  • Međunarodni Institut za nauku o sinterovanju, Beograd
Funding / projects:
  • NSF CRESTNational Science Foundation (NSF)NSF- Directorate for Education & Human Resources (EHR) [HRD-0833184]
  • NASANational Aeronautics & Space Administration (NASA) [NNX09AV07A]
  • Swiss Contribution [SH/7/2/20]
  • AIT grant
  • Zeno-Karl Schindler foundation
  • MBR Global Water Initiatives
  • [NSF-PREM1523617]
  • Directed synthesis, structure and properties of multifunctional materials (RS-172057)
  • Synthesis, processing and applications of nanostructured multifunctional materials with defined properties (RS-45019)

DOI: 10.2298/SOS1801039V

ISSN: 0350-820X

WoS: 000429909100004

Scopus: 2-s2.0-85053939304
[ Google Scholar ]
10
9
URI
http://TechnoRep.tmf.bg.ac.rs/handle/123456789/4032
Collections
  • Radovi istraživača / Researchers’ publications (TMF)
  • Radovi istraživača (Inovacioni centar) / Researchers’ publications (Innovation Centre)
Institution/Community
Tehnološko-metalurški fakultet
TY  - JOUR
AU  - Vujančević, Jelena
AU  - Bjelajac, Anđelika
AU  - Ćirković, Jovana
AU  - Pavlović, Vera P.
AU  - Horvath, Endre
AU  - Forro, Laszlo
AU  - Vlahović, Branislav
AU  - Mitrić, Miodrag
AU  - Janaćković, Đorđe
AU  - Pavlović, Vladimir B.
PY  - 2018
UR  - http://TechnoRep.tmf.bg.ac.rs/handle/123456789/4032
AB  - One-dimensional (1D) TiO2 nanotubes perpendicular to the substrate were obtained by electrochemical oxidation of titanium foil in an acid electrolyte. In order to alter the crystallinity and the morphology of films the as-anodized amorphous TiO2 nanotube films were sintered at elevated temperatures. The evolution of the morphology was visualized via scanning electron microscopy (SEM), while the crystalline structure was investigated by Xray diffraction (XRD) and Raman spectroscopy. The chemical composition was studied by Xray photoelectron spectroscopy (XPS). The effects of crystallinity and morphology of TiO2 nanotube (NTs) films on photocatalytic degradation of methyl orange (MO) in an aqueous solution under UV light irradiation were also investigated. The TiO2 nanotubes sintered at 650 degrees C for 30 min had the highest degree of crystallinity and exhibited the best photocatalytic activity among the studied TiO2 nanotube films.
PB  - Međunarodni Institut za nauku o sinterovanju, Beograd
T2  - Science of Sintering
T1  - Structure and photocatalytic properties of sintered TiO2 nanotube arrays
EP  - 50
IS  - 1
SP  - 39
VL  - 50
DO  - 10.2298/SOS1801039V
ER  - 
@article{
author = "Vujančević, Jelena and Bjelajac, Anđelika and Ćirković, Jovana and Pavlović, Vera P. and Horvath, Endre and Forro, Laszlo and Vlahović, Branislav and Mitrić, Miodrag and Janaćković, Đorđe and Pavlović, Vladimir B.",
year = "2018",
abstract = "One-dimensional (1D) TiO2 nanotubes perpendicular to the substrate were obtained by electrochemical oxidation of titanium foil in an acid electrolyte. In order to alter the crystallinity and the morphology of films the as-anodized amorphous TiO2 nanotube films were sintered at elevated temperatures. The evolution of the morphology was visualized via scanning electron microscopy (SEM), while the crystalline structure was investigated by Xray diffraction (XRD) and Raman spectroscopy. The chemical composition was studied by Xray photoelectron spectroscopy (XPS). The effects of crystallinity and morphology of TiO2 nanotube (NTs) films on photocatalytic degradation of methyl orange (MO) in an aqueous solution under UV light irradiation were also investigated. The TiO2 nanotubes sintered at 650 degrees C for 30 min had the highest degree of crystallinity and exhibited the best photocatalytic activity among the studied TiO2 nanotube films.",
publisher = "Međunarodni Institut za nauku o sinterovanju, Beograd",
journal = "Science of Sintering",
title = "Structure and photocatalytic properties of sintered TiO2 nanotube arrays",
pages = "50-39",
number = "1",
volume = "50",
doi = "10.2298/SOS1801039V"
}
Vujančević, J., Bjelajac, A., Ćirković, J., Pavlović, V. P., Horvath, E., Forro, L., Vlahović, B., Mitrić, M., Janaćković, Đ.,& Pavlović, V. B.. (2018). Structure and photocatalytic properties of sintered TiO2 nanotube arrays. in Science of Sintering
Međunarodni Institut za nauku o sinterovanju, Beograd., 50(1), 39-50.
https://doi.org/10.2298/SOS1801039V
Vujančević J, Bjelajac A, Ćirković J, Pavlović VP, Horvath E, Forro L, Vlahović B, Mitrić M, Janaćković Đ, Pavlović VB. Structure and photocatalytic properties of sintered TiO2 nanotube arrays. in Science of Sintering. 2018;50(1):39-50.
doi:10.2298/SOS1801039V .
Vujančević, Jelena, Bjelajac, Anđelika, Ćirković, Jovana, Pavlović, Vera P., Horvath, Endre, Forro, Laszlo, Vlahović, Branislav, Mitrić, Miodrag, Janaćković, Đorđe, Pavlović, Vladimir B., "Structure and photocatalytic properties of sintered TiO2 nanotube arrays" in Science of Sintering, 50, no. 1 (2018):39-50,
https://doi.org/10.2298/SOS1801039V . .

DSpace software copyright © 2002-2015  DuraSpace
About TechnoRep | Send Feedback

OpenAIRERCUB
 

 

All of DSpaceInstitutions/communitiesAuthorsTitlesSubjectsThis institutionAuthorsTitlesSubjects

Statistics

View Usage Statistics

DSpace software copyright © 2002-2015  DuraSpace
About TechnoRep | Send Feedback

OpenAIRERCUB