TechnoRep - Faculty of Technology and Metallurgy Repository
University of Belgrade - Faculty of Technology and Metallurgy
    • English
    • Српски
    • Српски (Serbia)
  • English 
    • English
    • Serbian (Cyrillic)
    • Serbian (Latin)
  • Login
View Item 
  •   TechnoRep
  • Tehnološko-metalurški fakultet
  • Radovi istraživača / Researchers’ publications (TMF)
  • View Item
  •   TechnoRep
  • Tehnološko-metalurški fakultet
  • Radovi istraživača / Researchers’ publications (TMF)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Biodiesel synthesis over green catalyst: The effect of thermal treatment of CaO/Zeolite precursor on catalytic activity

Thumbnail
2019
4197.pdf (741.8Kb)
Authors
Paunović, Anđela
Pavlović, Stefan
Marinković, Dalibor
Mojović, Ljiljana
Conference object (Published version)
Metadata
Show full item record
Abstract
The green CaO/Zeolite catalyst for methanolysis of fatty oils was synthesized entirely from the waste materials. CaO derived from chicken eggshell was loaded onto fly ashbased zeolite catalyst carrier by the wet impregnation method using an alcohol solution. The effect of thermal activation at different temperatures ranging from 450 to 600 °C on catalytic activity was studied. The precursor and catalyst samples were characterized by XRD, FTIR, SEM, and Hg-porosimetry techniques. The catalytic tests were performed in a stirred batch reactor at the following reaction conditions: 60 °C - reaction temperature, 12:1 - methanol/oil molar ratio, and 4 wt% - catalyst concentration. The obtained results showed that the synthesized CaO/Zeolite catalyst has preserved alumosilicate framework-cancrinite type [1], with uniformly distributed calcium oxide (CaO) on its surface (Fig. 1c). It is shown that the catalyst sample calcinated at 550 °C exhibited the highest FAME content of 96.46%, which was a...chieved in 2 h (Fig. 2). Increasing temperature of calcination above 550 °C led to the formation of inactive calcium alumosilicate forms causing a decrease in the FAME content.

Keywords:
Green catalyst / CaO / zeolite / thermal treatment
Source:
Book of abstracts - Seventh Conference of the Young Chemists of Serbia, 2019, 101-101
Publisher:
  • Belgrade : Serbian Chemical Society
Funding / projects:
  • Nanostructured Functional and Composite Materials in Catalytic and Sorption Processes (RS-45001)

ISBN: 978-86-7132-076-4

[ Google Scholar ]
Handle
https://hdl.handle.net/21.15107/rcub_technorep_4200
URI
http://TechnoRep.tmf.bg.ac.rs/handle/123456789/4200
Collections
  • Radovi istraživača / Researchers’ publications (TMF)
Institution/Community
Tehnološko-metalurški fakultet
TY  - CONF
AU  - Paunović, Anđela
AU  - Pavlović, Stefan
AU  - Marinković, Dalibor
AU  - Mojović, Ljiljana
PY  - 2019
UR  - http://TechnoRep.tmf.bg.ac.rs/handle/123456789/4200
AB  - The green CaO/Zeolite catalyst for methanolysis of fatty oils was synthesized entirely from the waste materials. CaO derived from chicken eggshell was loaded onto fly ashbased zeolite catalyst carrier by the wet impregnation method using an alcohol solution. The effect of thermal activation at different temperatures ranging from 450 to 600 °C on catalytic activity was studied. The precursor and catalyst samples were characterized by XRD, FTIR, SEM, and Hg-porosimetry techniques. The catalytic tests were performed in a stirred batch reactor at the following reaction conditions: 60 °C - reaction temperature, 12:1 - methanol/oil molar ratio, and 4 wt% - catalyst concentration. The obtained results showed that the synthesized CaO/Zeolite catalyst has preserved alumosilicate framework-cancrinite type [1], with uniformly distributed calcium oxide (CaO) on its surface (Fig. 1c). It is shown that the catalyst sample calcinated at 550 °C exhibited the highest FAME content of 96.46%, which was achieved in 2 h (Fig. 2). Increasing temperature of calcination above 550 °C led to the formation of inactive calcium alumosilicate forms causing a decrease in the FAME content.
PB  - Belgrade : Serbian Chemical Society
C3  - Book of abstracts - Seventh Conference of the Young Chemists of Serbia
T1  - Biodiesel synthesis over green catalyst: The effect of thermal treatment of CaO/Zeolite precursor on catalytic activity
EP  - 101
SP  - 101
UR  - https://hdl.handle.net/21.15107/rcub_technorep_4200
ER  - 
@conference{
author = "Paunović, Anđela and Pavlović, Stefan and Marinković, Dalibor and Mojović, Ljiljana",
year = "2019",
abstract = "The green CaO/Zeolite catalyst for methanolysis of fatty oils was synthesized entirely from the waste materials. CaO derived from chicken eggshell was loaded onto fly ashbased zeolite catalyst carrier by the wet impregnation method using an alcohol solution. The effect of thermal activation at different temperatures ranging from 450 to 600 °C on catalytic activity was studied. The precursor and catalyst samples were characterized by XRD, FTIR, SEM, and Hg-porosimetry techniques. The catalytic tests were performed in a stirred batch reactor at the following reaction conditions: 60 °C - reaction temperature, 12:1 - methanol/oil molar ratio, and 4 wt% - catalyst concentration. The obtained results showed that the synthesized CaO/Zeolite catalyst has preserved alumosilicate framework-cancrinite type [1], with uniformly distributed calcium oxide (CaO) on its surface (Fig. 1c). It is shown that the catalyst sample calcinated at 550 °C exhibited the highest FAME content of 96.46%, which was achieved in 2 h (Fig. 2). Increasing temperature of calcination above 550 °C led to the formation of inactive calcium alumosilicate forms causing a decrease in the FAME content.",
publisher = "Belgrade : Serbian Chemical Society",
journal = "Book of abstracts - Seventh Conference of the Young Chemists of Serbia",
title = "Biodiesel synthesis over green catalyst: The effect of thermal treatment of CaO/Zeolite precursor on catalytic activity",
pages = "101-101",
url = "https://hdl.handle.net/21.15107/rcub_technorep_4200"
}
Paunović, A., Pavlović, S., Marinković, D.,& Mojović, L.. (2019). Biodiesel synthesis over green catalyst: The effect of thermal treatment of CaO/Zeolite precursor on catalytic activity. in Book of abstracts - Seventh Conference of the Young Chemists of Serbia
Belgrade : Serbian Chemical Society., 101-101.
https://hdl.handle.net/21.15107/rcub_technorep_4200
Paunović A, Pavlović S, Marinković D, Mojović L. Biodiesel synthesis over green catalyst: The effect of thermal treatment of CaO/Zeolite precursor on catalytic activity. in Book of abstracts - Seventh Conference of the Young Chemists of Serbia. 2019;:101-101.
https://hdl.handle.net/21.15107/rcub_technorep_4200 .
Paunović, Anđela, Pavlović, Stefan, Marinković, Dalibor, Mojović, Ljiljana, "Biodiesel synthesis over green catalyst: The effect of thermal treatment of CaO/Zeolite precursor on catalytic activity" in Book of abstracts - Seventh Conference of the Young Chemists of Serbia (2019):101-101,
https://hdl.handle.net/21.15107/rcub_technorep_4200 .

DSpace software copyright © 2002-2015  DuraSpace
About TechnoRep | Send Feedback

OpenAIRERCUB
 

 

All of DSpaceInstitutions/communitiesAuthorsTitlesSubjectsThis institutionAuthorsTitlesSubjects

Statistics

View Usage Statistics

DSpace software copyright © 2002-2015  DuraSpace
About TechnoRep | Send Feedback

OpenAIRERCUB