TechnoRep - Faculty of Technology and Metallurgy Repository
University of Belgrade - Faculty of Technology and Metallurgy
    • English
    • Српски
    • Српски (Serbia)
  • English 
    • English
    • Serbian (Cyrillic)
    • Serbian (Latin)
  • Login
View Item 
  •   TechnoRep
  • Tehnološko-metalurški fakultet
  • Radovi istraživača / Researchers’ publications (TMF)
  • View Item
  •   TechnoRep
  • Tehnološko-metalurški fakultet
  • Radovi istraživača / Researchers’ publications (TMF)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Synthesis of CaO-SiO2 compounds and their testing as heterogeneous catalysts for transesterification of sunflower oil

Authorized Users Only
2019
Authors
Zdujić, Miodrag
Lukić, Ivana
Kesić, Željka
Janković-Častvan, Ivona
Marković, Smilja
Jovalekić, Čedomir
Skala, Dejan
Article (Published version)
Metadata
Show full item record
Abstract
The powder mixtures of calcium oxide (CaO) and silica gel (SiO2) in molar ratios of 1:1, 1.5:1, 2:1 and 3:1 were mechanochemically treated with the addition of water, and were subsequently calcined with a goal of synthesizing CaSiO3, Ca3Si2O7, Ca2SiO4 compounds and CaO/Ca2SiO4 two-phase mixture. The prepared materials were characterized by XRD, FTIR, SEM/EDS, particle size laser diffraction (PSLD), UV-vis diffuse reflectance spectroscopy (DRS), N-2 adsorption/desorption isotherms, Hammett indicator for basic strength and volumetric analysis for free CaO content. The catalytic activity of calcium silicates with different Ca/Si ratios was tested in the transesterification of triacylglycerols (sunflower oil) with methanol. Samples obtained with initial composition 2CaO center dot SiO2 and 3CaO center dot SiO2 calcined at 700 degrees C, and 3CaO center dot SiO2 calcined at 900 degrees C had high catalytic activity, resulting with triacylglycerols conversion and fatty acids methyl ester for...mation (FAME or biodiesel) above 96%. The activity of these samples can be attributed to the existence of free CaO defined by CaO/Ca2SiO4 complex mixture. The effect of different amount of catalyst used for transesterification (0.2-2 wt%) was analyzed using the most active catalyst i.e. 3CaO center dot SiO2 calcined at 700 degrees C as well as possibility of its reuse for biodiesel synthesis. It was also found that CaSiO3, Ca3Si2O7 and Ca2SiO4, phases did not possess catalytic activity.

Keywords:
Calcium silicates / Biodiesel, CaO / Catalytic activity
Source:
Advanced Powder Technology, 2019, 30, 6, 1141-1150
Publisher:
  • Elsevier Science Bv, Amsterdam
Funding / projects:
  • Nanostructured Functional and Composite Materials in Catalytic and Sorption Processes (RS-45001)

DOI: 10.1016/j.apt.2019.03.009

ISSN: 0921-8831

WoS: 000466775600003

Scopus: 2-s2.0-85062950461
[ Google Scholar ]
13
10
URI
http://TechnoRep.tmf.bg.ac.rs/handle/123456789/4261
Collections
  • Radovi istraživača / Researchers’ publications (TMF)
Institution/Community
Tehnološko-metalurški fakultet
TY  - JOUR
AU  - Zdujić, Miodrag
AU  - Lukić, Ivana
AU  - Kesić, Željka
AU  - Janković-Častvan, Ivona
AU  - Marković, Smilja
AU  - Jovalekić, Čedomir
AU  - Skala, Dejan
PY  - 2019
UR  - http://TechnoRep.tmf.bg.ac.rs/handle/123456789/4261
AB  - The powder mixtures of calcium oxide (CaO) and silica gel (SiO2) in molar ratios of 1:1, 1.5:1, 2:1 and 3:1 were mechanochemically treated with the addition of water, and were subsequently calcined with a goal of synthesizing CaSiO3, Ca3Si2O7, Ca2SiO4 compounds and CaO/Ca2SiO4 two-phase mixture. The prepared materials were characterized by XRD, FTIR, SEM/EDS, particle size laser diffraction (PSLD), UV-vis diffuse reflectance spectroscopy (DRS), N-2 adsorption/desorption isotherms, Hammett indicator for basic strength and volumetric analysis for free CaO content. The catalytic activity of calcium silicates with different Ca/Si ratios was tested in the transesterification of triacylglycerols (sunflower oil) with methanol. Samples obtained with initial composition 2CaO center dot SiO2 and 3CaO center dot SiO2 calcined at 700 degrees C, and 3CaO center dot SiO2 calcined at 900 degrees C had high catalytic activity, resulting with triacylglycerols conversion and fatty acids methyl ester formation (FAME or biodiesel) above 96%. The activity of these samples can be attributed to the existence of free CaO defined by CaO/Ca2SiO4 complex mixture. The effect of different amount of catalyst used for transesterification (0.2-2 wt%) was analyzed using the most active catalyst i.e. 3CaO center dot SiO2 calcined at 700 degrees C as well as possibility of its reuse for biodiesel synthesis. It was also found that CaSiO3, Ca3Si2O7 and Ca2SiO4, phases did not possess catalytic activity.
PB  - Elsevier Science Bv, Amsterdam
T2  - Advanced Powder Technology
T1  - Synthesis of CaO-SiO2 compounds and their testing as heterogeneous catalysts for transesterification of sunflower oil
EP  - 1150
IS  - 6
SP  - 1141
VL  - 30
DO  - 10.1016/j.apt.2019.03.009
ER  - 
@article{
author = "Zdujić, Miodrag and Lukić, Ivana and Kesić, Željka and Janković-Častvan, Ivona and Marković, Smilja and Jovalekić, Čedomir and Skala, Dejan",
year = "2019",
abstract = "The powder mixtures of calcium oxide (CaO) and silica gel (SiO2) in molar ratios of 1:1, 1.5:1, 2:1 and 3:1 were mechanochemically treated with the addition of water, and were subsequently calcined with a goal of synthesizing CaSiO3, Ca3Si2O7, Ca2SiO4 compounds and CaO/Ca2SiO4 two-phase mixture. The prepared materials were characterized by XRD, FTIR, SEM/EDS, particle size laser diffraction (PSLD), UV-vis diffuse reflectance spectroscopy (DRS), N-2 adsorption/desorption isotherms, Hammett indicator for basic strength and volumetric analysis for free CaO content. The catalytic activity of calcium silicates with different Ca/Si ratios was tested in the transesterification of triacylglycerols (sunflower oil) with methanol. Samples obtained with initial composition 2CaO center dot SiO2 and 3CaO center dot SiO2 calcined at 700 degrees C, and 3CaO center dot SiO2 calcined at 900 degrees C had high catalytic activity, resulting with triacylglycerols conversion and fatty acids methyl ester formation (FAME or biodiesel) above 96%. The activity of these samples can be attributed to the existence of free CaO defined by CaO/Ca2SiO4 complex mixture. The effect of different amount of catalyst used for transesterification (0.2-2 wt%) was analyzed using the most active catalyst i.e. 3CaO center dot SiO2 calcined at 700 degrees C as well as possibility of its reuse for biodiesel synthesis. It was also found that CaSiO3, Ca3Si2O7 and Ca2SiO4, phases did not possess catalytic activity.",
publisher = "Elsevier Science Bv, Amsterdam",
journal = "Advanced Powder Technology",
title = "Synthesis of CaO-SiO2 compounds and their testing as heterogeneous catalysts for transesterification of sunflower oil",
pages = "1150-1141",
number = "6",
volume = "30",
doi = "10.1016/j.apt.2019.03.009"
}
Zdujić, M., Lukić, I., Kesić, Ž., Janković-Častvan, I., Marković, S., Jovalekić, Č.,& Skala, D.. (2019). Synthesis of CaO-SiO2 compounds and their testing as heterogeneous catalysts for transesterification of sunflower oil. in Advanced Powder Technology
Elsevier Science Bv, Amsterdam., 30(6), 1141-1150.
https://doi.org/10.1016/j.apt.2019.03.009
Zdujić M, Lukić I, Kesić Ž, Janković-Častvan I, Marković S, Jovalekić Č, Skala D. Synthesis of CaO-SiO2 compounds and their testing as heterogeneous catalysts for transesterification of sunflower oil. in Advanced Powder Technology. 2019;30(6):1141-1150.
doi:10.1016/j.apt.2019.03.009 .
Zdujić, Miodrag, Lukić, Ivana, Kesić, Željka, Janković-Častvan, Ivona, Marković, Smilja, Jovalekić, Čedomir, Skala, Dejan, "Synthesis of CaO-SiO2 compounds and their testing as heterogeneous catalysts for transesterification of sunflower oil" in Advanced Powder Technology, 30, no. 6 (2019):1141-1150,
https://doi.org/10.1016/j.apt.2019.03.009 . .

DSpace software copyright © 2002-2015  DuraSpace
About TechnoRep | Send Feedback

OpenAIRERCUB
 

 

All of DSpaceInstitutions/communitiesAuthorsTitlesSubjectsThis institutionAuthorsTitlesSubjects

Statistics

View Usage Statistics

DSpace software copyright © 2002-2015  DuraSpace
About TechnoRep | Send Feedback

OpenAIRERCUB