TechnoRep - Faculty of Technology and Metallurgy Repository
University of Belgrade - Faculty of Technology and Metallurgy
    • English
    • Српски
    • Српски (Serbia)
  • English 
    • English
    • Serbian (Cyrillic)
    • Serbian (Latin)
  • Login
View Item 
  •   TechnoRep
  • Tehnološko-metalurški fakultet
  • Radovi istraživača / Researchers’ publications (TMF)
  • View Item
  •   TechnoRep
  • Tehnološko-metalurški fakultet
  • Radovi istraživača / Researchers’ publications (TMF)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Polyamidoamine as a clay modifier and curing agent in preparation of epoxy nanocomposites

Authorized Users Only
2019
Authors
Tomić, Miloš
Dunjić, Branko
Nikolić, Marija
Trifković, Kata T.
Stanković, Nadežda
Pavlović, Vladimir B.
Bajat, Jelena
Đonlagić, Jasna
Article (Published version)
Metadata
Show full item record
Abstract
In the present study the commercial multifunctional fatty acid polyamidoamine (PAA) was for the first time simultaneously applied as a curing agent and clay modifier for epoxy/clay nanocomposites (NC) based on diglycidyl ether of bisphenol A. The montmorillonite (Cloisite (R) Na+) was modified with different quantities of partially and fully protonated polyamidoamine. The NCs with 0.5 wt% novel organoclay were prepared by solution intercalation method. The major aims of this paper are investigations of the effects of the composition of PAA modified clays on structure, mechanical, barrier properties and corrosion stability on steel substrates of NCs were studied. The thermogravimetric, flame photometry and X-ray diffraction analyses confirmed the efficient modification of clay surface with polyamidoamine, predominantly located within layers. The NCs exhibited an intercalated/exfoliated morphology and the presence of free amino groups and increased content of modifier facilitated dispers...ion of clay particles within the polymer matrix, as shown by electron microscopy techniques (SEM, TEM). Under an optimized loading of PAA (molar quantity of total amino groups per clay cation exchange capacity of 1.75), the layers in stacks were separated by 5.0 nm and high number of individual layers was present in NC. Clay modified by PAA with free amino groups showed increased storage modulus in the rubbery state, glass transition temperature of NCs, while dumping factor was decreased. The tensile test confirmed that introduction of flexible modifier on the epoxy/clay interface lead to increase in the ultimate tensile strenght and elongation at break by 31% and toughness up to 83%. The electrochemical impedance spectroscopy and permeability tests proved the pronounced barrier effect of clay particles against corrosive species and water vapor when high dispersion degree of clay in NC was achieved.

Keywords:
Polyamidoamine / Clay / Modification / Epoxy resin / Corrosion
Source:
Progress in Organic Coatings, 2019, 131, 311-321
Publisher:
  • Elsevier Science Sa, Lausanne
Funding / projects:
  • Synthesis and characterization of novel functional polymers and polymeric nanocomposites (RS-172062)
  • Directed synthesis, structure and properties of multifunctional materials (RS-172057)
  • Synthesis, processing and characterization of nanostructured materials for application in the field of energy, mechanical engineering, environmental protection and biomedicine (RS-45012)
  • Synthesis, processing and applications of nanostructured multifunctional materials with defined properties (RS-45019)

DOI: 10.1016/j.porgcoat.2019.02.037

ISSN: 0300-9440

WoS: 000466453100035

Scopus: 2-s2.0-85062222822
[ Google Scholar ]
11
7
URI
http://TechnoRep.tmf.bg.ac.rs/handle/123456789/4262
Collections
  • Radovi istraživača / Researchers’ publications (TMF)
Institution/Community
Tehnološko-metalurški fakultet
TY  - JOUR
AU  - Tomić, Miloš
AU  - Dunjić, Branko
AU  - Nikolić, Marija
AU  - Trifković, Kata T.
AU  - Stanković, Nadežda
AU  - Pavlović, Vladimir B.
AU  - Bajat, Jelena
AU  - Đonlagić, Jasna
PY  - 2019
UR  - http://TechnoRep.tmf.bg.ac.rs/handle/123456789/4262
AB  - In the present study the commercial multifunctional fatty acid polyamidoamine (PAA) was for the first time simultaneously applied as a curing agent and clay modifier for epoxy/clay nanocomposites (NC) based on diglycidyl ether of bisphenol A. The montmorillonite (Cloisite (R) Na+) was modified with different quantities of partially and fully protonated polyamidoamine. The NCs with 0.5 wt% novel organoclay were prepared by solution intercalation method. The major aims of this paper are investigations of the effects of the composition of PAA modified clays on structure, mechanical, barrier properties and corrosion stability on steel substrates of NCs were studied. The thermogravimetric, flame photometry and X-ray diffraction analyses confirmed the efficient modification of clay surface with polyamidoamine, predominantly located within layers. The NCs exhibited an intercalated/exfoliated morphology and the presence of free amino groups and increased content of modifier facilitated dispersion of clay particles within the polymer matrix, as shown by electron microscopy techniques (SEM, TEM). Under an optimized loading of PAA (molar quantity of total amino groups per clay cation exchange capacity of 1.75), the layers in stacks were separated by 5.0 nm and high number of individual layers was present in NC. Clay modified by PAA with free amino groups showed increased storage modulus in the rubbery state, glass transition temperature of NCs, while dumping factor was decreased. The tensile test confirmed that introduction of flexible modifier on the epoxy/clay interface lead to increase in the ultimate tensile strenght and elongation at break by 31% and toughness up to 83%. The electrochemical impedance spectroscopy and permeability tests proved the pronounced barrier effect of clay particles against corrosive species and water vapor when high dispersion degree of clay in NC was achieved.
PB  - Elsevier Science Sa, Lausanne
T2  - Progress in Organic Coatings
T1  - Polyamidoamine as a clay modifier and curing agent in preparation of epoxy nanocomposites
EP  - 321
SP  - 311
VL  - 131
DO  - 10.1016/j.porgcoat.2019.02.037
ER  - 
@article{
author = "Tomić, Miloš and Dunjić, Branko and Nikolić, Marija and Trifković, Kata T. and Stanković, Nadežda and Pavlović, Vladimir B. and Bajat, Jelena and Đonlagić, Jasna",
year = "2019",
abstract = "In the present study the commercial multifunctional fatty acid polyamidoamine (PAA) was for the first time simultaneously applied as a curing agent and clay modifier for epoxy/clay nanocomposites (NC) based on diglycidyl ether of bisphenol A. The montmorillonite (Cloisite (R) Na+) was modified with different quantities of partially and fully protonated polyamidoamine. The NCs with 0.5 wt% novel organoclay were prepared by solution intercalation method. The major aims of this paper are investigations of the effects of the composition of PAA modified clays on structure, mechanical, barrier properties and corrosion stability on steel substrates of NCs were studied. The thermogravimetric, flame photometry and X-ray diffraction analyses confirmed the efficient modification of clay surface with polyamidoamine, predominantly located within layers. The NCs exhibited an intercalated/exfoliated morphology and the presence of free amino groups and increased content of modifier facilitated dispersion of clay particles within the polymer matrix, as shown by electron microscopy techniques (SEM, TEM). Under an optimized loading of PAA (molar quantity of total amino groups per clay cation exchange capacity of 1.75), the layers in stacks were separated by 5.0 nm and high number of individual layers was present in NC. Clay modified by PAA with free amino groups showed increased storage modulus in the rubbery state, glass transition temperature of NCs, while dumping factor was decreased. The tensile test confirmed that introduction of flexible modifier on the epoxy/clay interface lead to increase in the ultimate tensile strenght and elongation at break by 31% and toughness up to 83%. The electrochemical impedance spectroscopy and permeability tests proved the pronounced barrier effect of clay particles against corrosive species and water vapor when high dispersion degree of clay in NC was achieved.",
publisher = "Elsevier Science Sa, Lausanne",
journal = "Progress in Organic Coatings",
title = "Polyamidoamine as a clay modifier and curing agent in preparation of epoxy nanocomposites",
pages = "321-311",
volume = "131",
doi = "10.1016/j.porgcoat.2019.02.037"
}
Tomić, M., Dunjić, B., Nikolić, M., Trifković, K. T., Stanković, N., Pavlović, V. B., Bajat, J.,& Đonlagić, J.. (2019). Polyamidoamine as a clay modifier and curing agent in preparation of epoxy nanocomposites. in Progress in Organic Coatings
Elsevier Science Sa, Lausanne., 131, 311-321.
https://doi.org/10.1016/j.porgcoat.2019.02.037
Tomić M, Dunjić B, Nikolić M, Trifković KT, Stanković N, Pavlović VB, Bajat J, Đonlagić J. Polyamidoamine as a clay modifier and curing agent in preparation of epoxy nanocomposites. in Progress in Organic Coatings. 2019;131:311-321.
doi:10.1016/j.porgcoat.2019.02.037 .
Tomić, Miloš, Dunjić, Branko, Nikolić, Marija, Trifković, Kata T., Stanković, Nadežda, Pavlović, Vladimir B., Bajat, Jelena, Đonlagić, Jasna, "Polyamidoamine as a clay modifier and curing agent in preparation of epoxy nanocomposites" in Progress in Organic Coatings, 131 (2019):311-321,
https://doi.org/10.1016/j.porgcoat.2019.02.037 . .

DSpace software copyright © 2002-2015  DuraSpace
About TechnoRep | Send Feedback

OpenAIRERCUB
 

 

All of DSpaceInstitutions/communitiesAuthorsTitlesSubjectsThis institutionAuthorsTitlesSubjects

Statistics

View Usage Statistics

DSpace software copyright © 2002-2015  DuraSpace
About TechnoRep | Send Feedback

OpenAIRERCUB