TechnoRep - Faculty of Technology and Metallurgy Repository
University of Belgrade - Faculty of Technology and Metallurgy
    • English
    • Српски
    • Српски (Serbia)
  • English 
    • English
    • Serbian (Cyrillic)
    • Serbian (Latin)
  • Login
View Item 
  •   TechnoRep
  • Inovacioni centar
  • Radovi istraživača (Inovacioni centar) / Researchers’ publications (Innovation Centre)
  • View Item
  •   TechnoRep
  • Inovacioni centar
  • Radovi istraživača (Inovacioni centar) / Researchers’ publications (Innovation Centre)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

The influence of synthesis conditions on the redox behaviour of LiFePO4 in aqueous solution

Thumbnail
2019
4326.pdf (2.497Mb)
Authors
Georgijević, Radovan
Vujković, Milica
Gutić, Sanjin J.
Aliefendić, Meho
Jugović, Dragana
Mitrić, Miodrag
Đokić, Veljko
Mentus, Slavko
Article (Published version)
Metadata
Show full item record
Abstract
To contribute to the knowledge on the influence of synthesis procedure on the intercalation kinetics of lithium ions into phospho-olivines, LiFePO4/C composite samples (LFPC) were synthesized in two ways, the first one in a sol-gel procedure (SG), and the other in a solid-state reaction (SS). The X-ray diffractograms (XRD) of both samples overlapped with that of pure LiFePO4, taken from the crystallographic database. Scanning electron microscopy pictures indicated the high degree of interparticle sintering, which caused a considerable agglomerate growth. The results of potentiodynamic measurements in aqueous LiNO3 solution revealed that for SS sample, three times higher initial capacity from that of SG one, (amounting to 74 mAh g(-1) at 5 mV s(-1)). However, capacity fade on rising scan rate is much more expressed for SS sample than for SG one. We suggest that a different degree of material utilization due to the incomplete coverage of olivine particles by carbon explains this differen...ce. The technique of separation of diffusion and capacitance currents was applied in a kinetic analysis, but it was shown to be inappropriate. We suggest the inapplicability of classic CV theory to the intercalation system accompanied by phase transition. Instead, a model of ohmic resistance determination of process kinetics was considered. LFPC-SS sample delivers three times larger capacity in LiNO3, amounting to 74 mAh g(-1) at 1 mV s(-1).

Keywords:
Olivine LiFePO4 / Aqueous electrolyte / Kinetics of lithium redox behaviour
Source:
Journal of Alloys and Compounds, 2019, 776, 475-485
Publisher:
  • Elsevier Science Sa, Lausanne
Funding / projects:
  • bilateral project Serbia-Slovenia entitled "Developments of novel materials for alkaline-ion batteries"
  • Lithium-ion batteries and fuel cells - research and development (RS-45014)
  • Molecular designing of nanoparticles with controlled morphological and physicochemical characteristics and functional materials based on them (RS-45004)
  • Magnetic and radionuclide labeled nanostructured materials for medical applications (RS-45015)
  • Synthesis, processing and applications of nanostructured multifunctional materials with defined properties (RS-45019)

DOI: 10.1016/j.jallcom.2018.10.246

ISSN: 0925-8388

WoS: 000453826200054

Scopus: 2-s2.0-85055737904
[ Google Scholar ]
8
8
URI
http://TechnoRep.tmf.bg.ac.rs/handle/123456789/4329
Collections
  • Radovi istraživača (Inovacioni centar) / Researchers’ publications (Innovation Centre)
Institution/Community
Inovacioni centar
TY  - JOUR
AU  - Georgijević, Radovan
AU  - Vujković, Milica
AU  - Gutić, Sanjin J.
AU  - Aliefendić, Meho
AU  - Jugović, Dragana
AU  - Mitrić, Miodrag
AU  - Đokić, Veljko
AU  - Mentus, Slavko
PY  - 2019
UR  - http://TechnoRep.tmf.bg.ac.rs/handle/123456789/4329
AB  - To contribute to the knowledge on the influence of synthesis procedure on the intercalation kinetics of lithium ions into phospho-olivines, LiFePO4/C composite samples (LFPC) were synthesized in two ways, the first one in a sol-gel procedure (SG), and the other in a solid-state reaction (SS). The X-ray diffractograms (XRD) of both samples overlapped with that of pure LiFePO4, taken from the crystallographic database. Scanning electron microscopy pictures indicated the high degree of interparticle sintering, which caused a considerable agglomerate growth. The results of potentiodynamic measurements in aqueous LiNO3 solution revealed that for SS sample, three times higher initial capacity from that of SG one, (amounting to 74 mAh g(-1) at 5 mV s(-1)). However, capacity fade on rising scan rate is much more expressed for SS sample than for SG one. We suggest that a different degree of material utilization due to the incomplete coverage of olivine particles by carbon explains this difference. The technique of separation of diffusion and capacitance currents was applied in a kinetic analysis, but it was shown to be inappropriate. We suggest the inapplicability of classic CV theory to the intercalation system accompanied by phase transition. Instead, a model of ohmic resistance determination of process kinetics was considered. LFPC-SS sample delivers three times larger capacity in LiNO3, amounting to 74 mAh g(-1) at 1 mV s(-1).
PB  - Elsevier Science Sa, Lausanne
T2  - Journal of Alloys and Compounds
T1  - The influence of synthesis conditions on the redox behaviour of LiFePO4 in aqueous solution
EP  - 485
SP  - 475
VL  - 776
DO  - 10.1016/j.jallcom.2018.10.246
ER  - 
@article{
author = "Georgijević, Radovan and Vujković, Milica and Gutić, Sanjin J. and Aliefendić, Meho and Jugović, Dragana and Mitrić, Miodrag and Đokić, Veljko and Mentus, Slavko",
year = "2019",
abstract = "To contribute to the knowledge on the influence of synthesis procedure on the intercalation kinetics of lithium ions into phospho-olivines, LiFePO4/C composite samples (LFPC) were synthesized in two ways, the first one in a sol-gel procedure (SG), and the other in a solid-state reaction (SS). The X-ray diffractograms (XRD) of both samples overlapped with that of pure LiFePO4, taken from the crystallographic database. Scanning electron microscopy pictures indicated the high degree of interparticle sintering, which caused a considerable agglomerate growth. The results of potentiodynamic measurements in aqueous LiNO3 solution revealed that for SS sample, three times higher initial capacity from that of SG one, (amounting to 74 mAh g(-1) at 5 mV s(-1)). However, capacity fade on rising scan rate is much more expressed for SS sample than for SG one. We suggest that a different degree of material utilization due to the incomplete coverage of olivine particles by carbon explains this difference. The technique of separation of diffusion and capacitance currents was applied in a kinetic analysis, but it was shown to be inappropriate. We suggest the inapplicability of classic CV theory to the intercalation system accompanied by phase transition. Instead, a model of ohmic resistance determination of process kinetics was considered. LFPC-SS sample delivers three times larger capacity in LiNO3, amounting to 74 mAh g(-1) at 1 mV s(-1).",
publisher = "Elsevier Science Sa, Lausanne",
journal = "Journal of Alloys and Compounds",
title = "The influence of synthesis conditions on the redox behaviour of LiFePO4 in aqueous solution",
pages = "485-475",
volume = "776",
doi = "10.1016/j.jallcom.2018.10.246"
}
Georgijević, R., Vujković, M., Gutić, S. J., Aliefendić, M., Jugović, D., Mitrić, M., Đokić, V.,& Mentus, S.. (2019). The influence of synthesis conditions on the redox behaviour of LiFePO4 in aqueous solution. in Journal of Alloys and Compounds
Elsevier Science Sa, Lausanne., 776, 475-485.
https://doi.org/10.1016/j.jallcom.2018.10.246
Georgijević R, Vujković M, Gutić SJ, Aliefendić M, Jugović D, Mitrić M, Đokić V, Mentus S. The influence of synthesis conditions on the redox behaviour of LiFePO4 in aqueous solution. in Journal of Alloys and Compounds. 2019;776:475-485.
doi:10.1016/j.jallcom.2018.10.246 .
Georgijević, Radovan, Vujković, Milica, Gutić, Sanjin J., Aliefendić, Meho, Jugović, Dragana, Mitrić, Miodrag, Đokić, Veljko, Mentus, Slavko, "The influence of synthesis conditions on the redox behaviour of LiFePO4 in aqueous solution" in Journal of Alloys and Compounds, 776 (2019):475-485,
https://doi.org/10.1016/j.jallcom.2018.10.246 . .

DSpace software copyright © 2002-2015  DuraSpace
About TechnoRep | Send Feedback

OpenAIRERCUB
 

 

All of DSpaceInstitutions/communitiesAuthorsTitlesSubjectsThis institutionAuthorsTitlesSubjects

Statistics

View Usage Statistics

DSpace software copyright © 2002-2015  DuraSpace
About TechnoRep | Send Feedback

OpenAIRERCUB