TechnoRep - Faculty of Technology and Metallurgy Repository
University of Belgrade - Faculty of Technology and Metallurgy
    • English
    • Српски
    • Српски (Serbia)
  • English 
    • English
    • Serbian (Cyrillic)
    • Serbian (Latin)
  • Login
View Item 
  •   TechnoRep
  • Tehnološko-metalurški fakultet
  • Radovi istraživača / Researchers’ publications (TMF)
  • View Item
  •   TechnoRep
  • Tehnološko-metalurški fakultet
  • Radovi istraživača / Researchers’ publications (TMF)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Batch and column adsorption of cations, oxyanions and dyes on a magnetite modified cellulose-based membrane

Authorized Users Only
2020
Authors
Perendija, Jovana
Veličković, Zlate
Cvijetić, Ilija
Rusmirović, Jelena
Ugrinović, Vukašin
Marinković, Aleksandar
Onjia, Antonije
Article (Published version)
Metadata
Show full item record
Abstract
An optimized method is presented to make magnetite (MG) modified cellulose membrane (Cell-MG) from 3-aminopropyltriethoxysilane and diethylenetriaminepentaacetic acid dianhydride functionalized waste cell fibers; (Cell-NH(2)and Cell-DTPA), and amino-modified diatomite. Functionalized Cell-NH2, Cell-DTPA fibers, and diatomite were structurally and morphologically characterized using FT-IR, Raman, and FE-SEM analysis. Amino and carboxyl group content was determined via standard volumetric methods. Response surface method was applied to rationalize the number of experiments related to Cell-MG synthesis and heavy metal ions column adsorption experiments. The effects of pH, contact time, temperature, and initial concentration of pollutants on adsorption and kinetics were studied in a batch, while initial concentration and flow rate were studied in a flow system. The calculated capacities of 88.2, 100.7, 95.8 and 78.2 mg g(-1)for Ni2+, Pb2+, Cr(VI) and As(V) ions, respectively, were obtained... from Langmuir model fitting. Intra-particle diffusion as a rate-limiting step was evaluated from pseudo-second-order and Weber-Morris model fitting. Thermodynamic parameters indicated spontaneous and low endothermic processes. The results from reusability study, wastewater purification and fixed-bed column study proved the high applicability of Cell-MG. Additionally, high removal capacity of four dyes together with density functional theory and molecular interaction fields, help in the establishment of relation between the adsorption performances and contribution of non-specific and specific interactions at adsorbate/adsorbent interface.

Keywords:
Cellulose membrane / Magnetite / Batch adsorption / Fixed-bed column adsorption study / Pollutant
Source:
Cellulose, 2020, 27, 14, 8215-8235
Publisher:
  • Springer, Dordrecht
Funding / projects:
  • Ministry of Education, Science and Technological Development, Republic of Serbia, Grant no. 200026 (University of Belgrade, Institute of Chemistry, Technology and Metallurgy - IChTM) (RS-200026)
  • Ministry of Education, Science and Technological Development, Republic of Serbia, Grant no. 200135 (University of Belgrade, Faculty of Technology and Metallurgy) (RS-200135)
  • Ministry of Education, Science and Technological Development, Republic of Serbia, Grant no. 200325 (Military Technical Institute - MTI, Belgrade) (RS-200325)
  • Ministry of Education, Science and Technological Development, Republic of Serbia, Grant no. 200288 (Innovation Center of the Faculty of Chemistry) (RS-200288)

DOI: 10.1007/s10570-020-03352-x

ISSN: 0969-0239

WoS: 000550616700002

Scopus: 2-s2.0-85088278515
[ Google Scholar ]
9
4
URI
http://TechnoRep.tmf.bg.ac.rs/handle/123456789/4348
Collections
  • Radovi istraživača / Researchers’ publications (TMF)
  • Radovi istraživača (Inovacioni centar) / Researchers’ publications (Innovation Centre)
Institution/Community
Tehnološko-metalurški fakultet
TY  - JOUR
AU  - Perendija, Jovana
AU  - Veličković, Zlate
AU  - Cvijetić, Ilija
AU  - Rusmirović, Jelena
AU  - Ugrinović, Vukašin
AU  - Marinković, Aleksandar
AU  - Onjia, Antonije
PY  - 2020
UR  - http://TechnoRep.tmf.bg.ac.rs/handle/123456789/4348
AB  - An optimized method is presented to make magnetite (MG) modified cellulose membrane (Cell-MG) from 3-aminopropyltriethoxysilane and diethylenetriaminepentaacetic acid dianhydride functionalized waste cell fibers; (Cell-NH(2)and Cell-DTPA), and amino-modified diatomite. Functionalized Cell-NH2, Cell-DTPA fibers, and diatomite were structurally and morphologically characterized using FT-IR, Raman, and FE-SEM analysis. Amino and carboxyl group content was determined via standard volumetric methods. Response surface method was applied to rationalize the number of experiments related to Cell-MG synthesis and heavy metal ions column adsorption experiments. The effects of pH, contact time, temperature, and initial concentration of pollutants on adsorption and kinetics were studied in a batch, while initial concentration and flow rate were studied in a flow system. The calculated capacities of 88.2, 100.7, 95.8 and 78.2 mg g(-1)for Ni2+, Pb2+, Cr(VI) and As(V) ions, respectively, were obtained from Langmuir model fitting. Intra-particle diffusion as a rate-limiting step was evaluated from pseudo-second-order and Weber-Morris model fitting. Thermodynamic parameters indicated spontaneous and low endothermic processes. The results from reusability study, wastewater purification and fixed-bed column study proved the high applicability of Cell-MG. Additionally, high removal capacity of four dyes together with density functional theory and molecular interaction fields, help in the establishment of relation between the adsorption performances and contribution of non-specific and specific interactions at adsorbate/adsorbent interface.
PB  - Springer, Dordrecht
T2  - Cellulose
T1  - Batch and column adsorption of cations, oxyanions and dyes on a magnetite modified cellulose-based membrane
EP  - 8235
IS  - 14
SP  - 8215
VL  - 27
DO  - 10.1007/s10570-020-03352-x
ER  - 
@article{
author = "Perendija, Jovana and Veličković, Zlate and Cvijetić, Ilija and Rusmirović, Jelena and Ugrinović, Vukašin and Marinković, Aleksandar and Onjia, Antonije",
year = "2020",
abstract = "An optimized method is presented to make magnetite (MG) modified cellulose membrane (Cell-MG) from 3-aminopropyltriethoxysilane and diethylenetriaminepentaacetic acid dianhydride functionalized waste cell fibers; (Cell-NH(2)and Cell-DTPA), and amino-modified diatomite. Functionalized Cell-NH2, Cell-DTPA fibers, and diatomite were structurally and morphologically characterized using FT-IR, Raman, and FE-SEM analysis. Amino and carboxyl group content was determined via standard volumetric methods. Response surface method was applied to rationalize the number of experiments related to Cell-MG synthesis and heavy metal ions column adsorption experiments. The effects of pH, contact time, temperature, and initial concentration of pollutants on adsorption and kinetics were studied in a batch, while initial concentration and flow rate were studied in a flow system. The calculated capacities of 88.2, 100.7, 95.8 and 78.2 mg g(-1)for Ni2+, Pb2+, Cr(VI) and As(V) ions, respectively, were obtained from Langmuir model fitting. Intra-particle diffusion as a rate-limiting step was evaluated from pseudo-second-order and Weber-Morris model fitting. Thermodynamic parameters indicated spontaneous and low endothermic processes. The results from reusability study, wastewater purification and fixed-bed column study proved the high applicability of Cell-MG. Additionally, high removal capacity of four dyes together with density functional theory and molecular interaction fields, help in the establishment of relation between the adsorption performances and contribution of non-specific and specific interactions at adsorbate/adsorbent interface.",
publisher = "Springer, Dordrecht",
journal = "Cellulose",
title = "Batch and column adsorption of cations, oxyanions and dyes on a magnetite modified cellulose-based membrane",
pages = "8235-8215",
number = "14",
volume = "27",
doi = "10.1007/s10570-020-03352-x"
}
Perendija, J., Veličković, Z., Cvijetić, I., Rusmirović, J., Ugrinović, V., Marinković, A.,& Onjia, A.. (2020). Batch and column adsorption of cations, oxyanions and dyes on a magnetite modified cellulose-based membrane. in Cellulose
Springer, Dordrecht., 27(14), 8215-8235.
https://doi.org/10.1007/s10570-020-03352-x
Perendija J, Veličković Z, Cvijetić I, Rusmirović J, Ugrinović V, Marinković A, Onjia A. Batch and column adsorption of cations, oxyanions and dyes on a magnetite modified cellulose-based membrane. in Cellulose. 2020;27(14):8215-8235.
doi:10.1007/s10570-020-03352-x .
Perendija, Jovana, Veličković, Zlate, Cvijetić, Ilija, Rusmirović, Jelena, Ugrinović, Vukašin, Marinković, Aleksandar, Onjia, Antonije, "Batch and column adsorption of cations, oxyanions and dyes on a magnetite modified cellulose-based membrane" in Cellulose, 27, no. 14 (2020):8215-8235,
https://doi.org/10.1007/s10570-020-03352-x . .

DSpace software copyright © 2002-2015  DuraSpace
About TechnoRep | Send Feedback

OpenAIRERCUB
 

 

All of DSpaceInstitutions/communitiesAuthorsTitlesSubjectsThis institutionAuthorsTitlesSubjects

Statistics

View Usage Statistics

DSpace software copyright © 2002-2015  DuraSpace
About TechnoRep | Send Feedback

OpenAIRERCUB