TechnoRep - Faculty of Technology and Metallurgy Repository
University of Belgrade - Faculty of Technology and Metallurgy
    • English
    • Српски
    • Српски (Serbia)
  • English 
    • English
    • Serbian (Cyrillic)
    • Serbian (Latin)
  • Login
View Item 
  •   TechnoRep
  • Tehnološko-metalurški fakultet
  • Radovi istraživača / Researchers’ publications (TMF)
  • View Item
  •   TechnoRep
  • Tehnološko-metalurški fakultet
  • Radovi istraživača / Researchers’ publications (TMF)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Poly(vinyl alcohol)/chitosan hydrogels with electrochemically synthesized silver nanoparticles for wound dressing applications

Thumbnail
2020
4492.pdf (1.093Mb)
Authors
Nešović, Katarina
Janković, Ana
Radetić, Tamara
Perić-Grujić, Aleksandra
Vukašinović-Sekulić, Maja
Kojić, Vesna
Rhee, Kyong Yop
Mišković-Stanković, Vesna
Article (Published version)
Metadata
Show full item record
Abstract
Polymer-based hydrogel materials are excellent candidates for new-generation wound dressings with improved properties, such as high sorption ability, good mechanical properties and low adhesiveness. Cross-linked hydrogel matrices also serve as excellent carriers for controlled release of antibacterial agents, such as silver nanoparticles (AgNPs), which are preferred over conventional antibiotics due to low propensity to induce bacterial resistance. In this work, we aim to produce novel silver/poly(vinyl alcohol)/chitosan (Ag/PVA/CHI) hydrogels for wound dressing applications. The electrochemical AgNPs synthesis provided facile and green method for the reduction of Ag+ ions inside the hydrogel matrices, without the need to use toxic chemical reducing agents. The formation of AgNPs was confirmed using UV-visible spectroscopy, scanning and transmission electron microscopy. Release kinetics was investigated in modified phosphate buffer solution at 37 degrees C to mimic physiological condit...ions. Release profiles indicated "burst release" behavior, which is beneficial for wound dressing applications. The antibacterial activity was evaluated against Staphylococcus aureus and Escherichia coli strains using disc-diffusion test, and non-toxicity of hydrogels was proved by dye-exclusion test. The obtained results confirmed strong potential of Ag/PVA/CHI hydrogels for biomedical applications.

Keywords:
Electrochemical synthesis / hydrogels / release kinetics / antibacterial activity / wound dressings
Source:
Journal of Electrochemical Science and Engineering, 2020, 10, 2, 185-198
Publisher:
  • Int Assoc Physical Chemists-Iapc, Zagreb
Funding / projects:
  • Synthesis, processing and applications of nanostructured multifunctional materials with defined properties (RS-45019)
  • National Research Foundation of the Ministry of Education, Republic of Korea [2018R1A2B5A02023190]

DOI: 10.5599/jese.732

ISSN: 1847-9286

WoS: 000519626200011

Scopus: 2-s2.0-85085290120
[ Google Scholar ]
6
3
URI
http://TechnoRep.tmf.bg.ac.rs/handle/123456789/4495
Collections
  • Radovi istraživača / Researchers’ publications (TMF)
  • Radovi istraživača (Inovacioni centar) / Researchers’ publications (Innovation Centre)
Institution/Community
Tehnološko-metalurški fakultet
TY  - JOUR
AU  - Nešović, Katarina
AU  - Janković, Ana
AU  - Radetić, Tamara
AU  - Perić-Grujić, Aleksandra
AU  - Vukašinović-Sekulić, Maja
AU  - Kojić, Vesna
AU  - Rhee, Kyong Yop
AU  - Mišković-Stanković, Vesna
PY  - 2020
UR  - http://TechnoRep.tmf.bg.ac.rs/handle/123456789/4495
AB  - Polymer-based hydrogel materials are excellent candidates for new-generation wound dressings with improved properties, such as high sorption ability, good mechanical properties and low adhesiveness. Cross-linked hydrogel matrices also serve as excellent carriers for controlled release of antibacterial agents, such as silver nanoparticles (AgNPs), which are preferred over conventional antibiotics due to low propensity to induce bacterial resistance. In this work, we aim to produce novel silver/poly(vinyl alcohol)/chitosan (Ag/PVA/CHI) hydrogels for wound dressing applications. The electrochemical AgNPs synthesis provided facile and green method for the reduction of Ag+ ions inside the hydrogel matrices, without the need to use toxic chemical reducing agents. The formation of AgNPs was confirmed using UV-visible spectroscopy, scanning and transmission electron microscopy. Release kinetics was investigated in modified phosphate buffer solution at 37 degrees C to mimic physiological conditions. Release profiles indicated "burst release" behavior, which is beneficial for wound dressing applications. The antibacterial activity was evaluated against Staphylococcus aureus and Escherichia coli strains using disc-diffusion test, and non-toxicity of hydrogels was proved by dye-exclusion test. The obtained results confirmed strong potential of Ag/PVA/CHI hydrogels for biomedical applications.
PB  - Int Assoc Physical Chemists-Iapc, Zagreb
T2  - Journal of Electrochemical Science and Engineering
T1  - Poly(vinyl alcohol)/chitosan hydrogels with electrochemically synthesized silver nanoparticles for wound dressing applications
EP  - 198
IS  - 2
SP  - 185
VL  - 10
DO  - 10.5599/jese.732
ER  - 
@article{
author = "Nešović, Katarina and Janković, Ana and Radetić, Tamara and Perić-Grujić, Aleksandra and Vukašinović-Sekulić, Maja and Kojić, Vesna and Rhee, Kyong Yop and Mišković-Stanković, Vesna",
year = "2020",
abstract = "Polymer-based hydrogel materials are excellent candidates for new-generation wound dressings with improved properties, such as high sorption ability, good mechanical properties and low adhesiveness. Cross-linked hydrogel matrices also serve as excellent carriers for controlled release of antibacterial agents, such as silver nanoparticles (AgNPs), which are preferred over conventional antibiotics due to low propensity to induce bacterial resistance. In this work, we aim to produce novel silver/poly(vinyl alcohol)/chitosan (Ag/PVA/CHI) hydrogels for wound dressing applications. The electrochemical AgNPs synthesis provided facile and green method for the reduction of Ag+ ions inside the hydrogel matrices, without the need to use toxic chemical reducing agents. The formation of AgNPs was confirmed using UV-visible spectroscopy, scanning and transmission electron microscopy. Release kinetics was investigated in modified phosphate buffer solution at 37 degrees C to mimic physiological conditions. Release profiles indicated "burst release" behavior, which is beneficial for wound dressing applications. The antibacterial activity was evaluated against Staphylococcus aureus and Escherichia coli strains using disc-diffusion test, and non-toxicity of hydrogels was proved by dye-exclusion test. The obtained results confirmed strong potential of Ag/PVA/CHI hydrogels for biomedical applications.",
publisher = "Int Assoc Physical Chemists-Iapc, Zagreb",
journal = "Journal of Electrochemical Science and Engineering",
title = "Poly(vinyl alcohol)/chitosan hydrogels with electrochemically synthesized silver nanoparticles for wound dressing applications",
pages = "198-185",
number = "2",
volume = "10",
doi = "10.5599/jese.732"
}
Nešović, K., Janković, A., Radetić, T., Perić-Grujić, A., Vukašinović-Sekulić, M., Kojić, V., Rhee, K. Y.,& Mišković-Stanković, V.. (2020). Poly(vinyl alcohol)/chitosan hydrogels with electrochemically synthesized silver nanoparticles for wound dressing applications. in Journal of Electrochemical Science and Engineering
Int Assoc Physical Chemists-Iapc, Zagreb., 10(2), 185-198.
https://doi.org/10.5599/jese.732
Nešović K, Janković A, Radetić T, Perić-Grujić A, Vukašinović-Sekulić M, Kojić V, Rhee KY, Mišković-Stanković V. Poly(vinyl alcohol)/chitosan hydrogels with electrochemically synthesized silver nanoparticles for wound dressing applications. in Journal of Electrochemical Science and Engineering. 2020;10(2):185-198.
doi:10.5599/jese.732 .
Nešović, Katarina, Janković, Ana, Radetić, Tamara, Perić-Grujić, Aleksandra, Vukašinović-Sekulić, Maja, Kojić, Vesna, Rhee, Kyong Yop, Mišković-Stanković, Vesna, "Poly(vinyl alcohol)/chitosan hydrogels with electrochemically synthesized silver nanoparticles for wound dressing applications" in Journal of Electrochemical Science and Engineering, 10, no. 2 (2020):185-198,
https://doi.org/10.5599/jese.732 . .

DSpace software copyright © 2002-2015  DuraSpace
About TechnoRep | Send Feedback

OpenAIRERCUB
 

 

All of DSpaceInstitutions/communitiesAuthorsTitlesSubjectsThis institutionAuthorsTitlesSubjects

Statistics

View Usage Statistics

DSpace software copyright © 2002-2015  DuraSpace
About TechnoRep | Send Feedback

OpenAIRERCUB