TechnoRep - Faculty of Technology and Metallurgy Repository
University of Belgrade - Faculty of Technology and Metallurgy
    • English
    • Српски
    • Српски (Serbia)
  • English 
    • English
    • Serbian (Cyrillic)
    • Serbian (Latin)
  • Login
View Item 
  •   TechnoRep
  • Tehnološko-metalurški fakultet
  • Radovi istraživača / Researchers’ publications (TMF)
  • View Item
  •   TechnoRep
  • Tehnološko-metalurški fakultet
  • Radovi istraživača / Researchers’ publications (TMF)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Real-Time AFM and Impedance Corrosion Monitoring of Environmentally Friendly Ceria Films on AA7075

Thumbnail
2020
4539.pdf (2.975Mb)
Authors
Stevanović, Sanja
Lekka, Maria
Lanzutti, Alex
Tasić, Nikola
Živković, Ljiljana
Fedrizzi, Lorenzo
Bajat, Jelena
Article (Published version)
Metadata
Show full item record
Abstract
Cerium-based conversion coatings have emerged as promising green alternatives to the harmful chromium-based ones, but the mechanism of corrosive protection still remains a subject of academic and industrial research. This study focuses at small scale phenomena of corrosion inhibition imparted by ceria (CeO2) to AA7075. Ceria nanoparticles were deposited from diluted and concentrated CeO2 sols by immersion. A multi-analytical approach, combining Atomic Force microscopy (AFM), Scanning Kelvin Probe Force Microscopy, Glow Discharge Optical Emission Spectroscopy, open circuit potential and electrochemical impedance spectroscopy was employed. Deposition of ceria films led to deactivation of cathodic sites, i.e. decreased Volta potential difference, resulting in increased corrosion inhibition. In situ AFM real-time monitoring revealed that during exposure to NaCl electrolyte, the changes in size of deposited ceria aggregates occurred: nanoparticles disintegrated/desorbed and re-deposited at ...the coating surface. The process was found to be dynamic in nature. Small particles size and inherent reactivity are believed to accelerate this phenomenon. Due to the greater CeO2 reservoir, this phenomenon was more pronounced with a thicker film, imparting longer term protection.

Source:
Journal of the Electrochemical Society, 2020, 167, 10
Publisher:
  • Electrochemical Soc Inc, Pennington
Funding / projects:
  • COST ActionEuropean Cooperation in Science and Technology (COST) [MP1407]
  • Ministry of Education, Science and Technological Development, Republic of Serbia, Grant no. 200135 (University of Belgrade, Faculty of Technology and Metallurgy) (RS-200135)
  • Ministry of Education, Science and Technological Development, Republic of Serbia, Grant no. 200017 (University of Belgrade, Institute of Nuclear Sciences 'Vinča', Belgrade-Vinča) (RS-200017)

DOI: 10.1149/1945-7111/ab98af

ISSN: 0013-4651

WoS: 000540299100001

Scopus: 2-s2.0-85086519972
[ Google Scholar ]
5
4
URI
http://TechnoRep.tmf.bg.ac.rs/handle/123456789/4542
Collections
  • Radovi istraživača / Researchers’ publications (TMF)
Institution/Community
Tehnološko-metalurški fakultet
TY  - JOUR
AU  - Stevanović, Sanja
AU  - Lekka, Maria
AU  - Lanzutti, Alex
AU  - Tasić, Nikola
AU  - Živković, Ljiljana
AU  - Fedrizzi, Lorenzo
AU  - Bajat, Jelena
PY  - 2020
UR  - http://TechnoRep.tmf.bg.ac.rs/handle/123456789/4542
AB  - Cerium-based conversion coatings have emerged as promising green alternatives to the harmful chromium-based ones, but the mechanism of corrosive protection still remains a subject of academic and industrial research. This study focuses at small scale phenomena of corrosion inhibition imparted by ceria (CeO2) to AA7075. Ceria nanoparticles were deposited from diluted and concentrated CeO2 sols by immersion. A multi-analytical approach, combining Atomic Force microscopy (AFM), Scanning Kelvin Probe Force Microscopy, Glow Discharge Optical Emission Spectroscopy, open circuit potential and electrochemical impedance spectroscopy was employed. Deposition of ceria films led to deactivation of cathodic sites, i.e. decreased Volta potential difference, resulting in increased corrosion inhibition. In situ AFM real-time monitoring revealed that during exposure to NaCl electrolyte, the changes in size of deposited ceria aggregates occurred: nanoparticles disintegrated/desorbed and re-deposited at the coating surface. The process was found to be dynamic in nature. Small particles size and inherent reactivity are believed to accelerate this phenomenon. Due to the greater CeO2 reservoir, this phenomenon was more pronounced with a thicker film, imparting longer term protection.
PB  - Electrochemical Soc Inc, Pennington
T2  - Journal of the Electrochemical Society
T1  - Real-Time AFM and Impedance Corrosion Monitoring of Environmentally Friendly Ceria Films on AA7075
IS  - 10
VL  - 167
DO  - 10.1149/1945-7111/ab98af
ER  - 
@article{
author = "Stevanović, Sanja and Lekka, Maria and Lanzutti, Alex and Tasić, Nikola and Živković, Ljiljana and Fedrizzi, Lorenzo and Bajat, Jelena",
year = "2020",
abstract = "Cerium-based conversion coatings have emerged as promising green alternatives to the harmful chromium-based ones, but the mechanism of corrosive protection still remains a subject of academic and industrial research. This study focuses at small scale phenomena of corrosion inhibition imparted by ceria (CeO2) to AA7075. Ceria nanoparticles were deposited from diluted and concentrated CeO2 sols by immersion. A multi-analytical approach, combining Atomic Force microscopy (AFM), Scanning Kelvin Probe Force Microscopy, Glow Discharge Optical Emission Spectroscopy, open circuit potential and electrochemical impedance spectroscopy was employed. Deposition of ceria films led to deactivation of cathodic sites, i.e. decreased Volta potential difference, resulting in increased corrosion inhibition. In situ AFM real-time monitoring revealed that during exposure to NaCl electrolyte, the changes in size of deposited ceria aggregates occurred: nanoparticles disintegrated/desorbed and re-deposited at the coating surface. The process was found to be dynamic in nature. Small particles size and inherent reactivity are believed to accelerate this phenomenon. Due to the greater CeO2 reservoir, this phenomenon was more pronounced with a thicker film, imparting longer term protection.",
publisher = "Electrochemical Soc Inc, Pennington",
journal = "Journal of the Electrochemical Society",
title = "Real-Time AFM and Impedance Corrosion Monitoring of Environmentally Friendly Ceria Films on AA7075",
number = "10",
volume = "167",
doi = "10.1149/1945-7111/ab98af"
}
Stevanović, S., Lekka, M., Lanzutti, A., Tasić, N., Živković, L., Fedrizzi, L.,& Bajat, J.. (2020). Real-Time AFM and Impedance Corrosion Monitoring of Environmentally Friendly Ceria Films on AA7075. in Journal of the Electrochemical Society
Electrochemical Soc Inc, Pennington., 167(10).
https://doi.org/10.1149/1945-7111/ab98af
Stevanović S, Lekka M, Lanzutti A, Tasić N, Živković L, Fedrizzi L, Bajat J. Real-Time AFM and Impedance Corrosion Monitoring of Environmentally Friendly Ceria Films on AA7075. in Journal of the Electrochemical Society. 2020;167(10).
doi:10.1149/1945-7111/ab98af .
Stevanović, Sanja, Lekka, Maria, Lanzutti, Alex, Tasić, Nikola, Živković, Ljiljana, Fedrizzi, Lorenzo, Bajat, Jelena, "Real-Time AFM and Impedance Corrosion Monitoring of Environmentally Friendly Ceria Films on AA7075" in Journal of the Electrochemical Society, 167, no. 10 (2020),
https://doi.org/10.1149/1945-7111/ab98af . .

DSpace software copyright © 2002-2015  DuraSpace
About TechnoRep | Send Feedback

OpenAIRERCUB
 

 

All of DSpaceInstitutions/communitiesAuthorsTitlesSubjectsThis institutionAuthorsTitlesSubjects

Statistics

View Usage Statistics

DSpace software copyright © 2002-2015  DuraSpace
About TechnoRep | Send Feedback

OpenAIRERCUB