Show simple item record

dc.creatorMarjanović, V.
dc.creatorPerić-Grujić, Aleksandra
dc.creatorRistić, M.
dc.creatorMarinković, Aleksandar
dc.creatorMarković, R.
dc.creatorOnjia, Antonije
dc.creatorŠljivić-Ivanović, Marija Z.
dc.date.accessioned2021-03-10T14:27:00Z
dc.date.available2021-03-10T14:27:00Z
dc.date.issued2020
dc.identifier.issn2075-4701
dc.identifier.urihttp://TechnoRep.tmf.bg.ac.rs/handle/123456789/4566
dc.description.abstractHybrid adsorbent, based on the cross-linked copolymer impregnated with hydrous iron oxide, was applied for the first time for Se(VI) adsorption from water. The influence of the initial solution pH, selenate concentration and contact time to adsorption capacity was investigated. Adsorbent regeneration was explored using a full factorial experimental design in order to optimize the volume, initial pH value and concentration of the applied NaCl solution as a reagent. Equilibrium state was described using the Langmuir model, while kinetics fitted the pseudo-first order. The maximum adsorption capacity was found to be 28.8 mg/g. Desorption efficiency increased up to 70%, and became statistically significant with the reagent concentration and pH increase, while the applied solution volume was found to be insignificant in the investigated range. Based on the results obtained, pH influence to the adsorption capacity, desorption efficiency, Fourier transform infrared (FTIR) and X-ray diffraction (XRD) analysis of loaded adsorbent, it was concluded that the outer-and inner-sphere complexation are mechanisms responsible for Se(VI) separation from water. In addition to the experiments with synthetic solutions, the adsorbent performances in drinking water samples were explored, showing the purification efficiency up to 25%, depending on the initial Se(VI) concentration and water pH. Determined sorption capacity of the cross-linked copolymer impregnated with hydrous iron oxide and its ability for regeneration, candidate this material for further research, as a promising anionic species sorbent.en
dc.publisherMDPI, Basel
dc.relationinfo:eu-repo/grantAgreement/MESTD/inst-2020/200135/RS//
dc.rightsopenAccess
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.sourceMetals
dc.subjectDesorptionen
dc.subjectFactorial designen
dc.subjectGoethiteen
dc.subjectMacroporous polymeren
dc.titleSelenate adsorption from water using the hydrous iron oxide-impregnated hybrid polymeren
dc.typearticle
dc.rights.licenseBY
dc.citation.epage15
dc.citation.issue12
dc.citation.other10(12): 1-15
dc.citation.rankM21~
dc.citation.spage1
dc.citation.volume10
dc.identifier.doi10.3390/met10121630
dc.identifier.fulltexthttp://TechnoRep.tmf.bg.ac.rs/bitstream/id/7214/Selenate_adsorption_from_pub_2020.pdf
dc.identifier.pmid
dc.identifier.rcubconv_6372
dc.identifier.scopus2-s2.0-85097239566
dc.identifier.wos000602498200001
dc.type.versionpublishedVersion


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record