TechnoRep - Faculty of Technology and Metallurgy Repository
University of Belgrade - Faculty of Technology and Metallurgy
    • English
    • Српски
    • Српски (Serbia)
  • English 
    • English
    • Serbian (Cyrillic)
    • Serbian (Latin)
  • Login
View Item 
  •   TechnoRep
  • Inovacioni centar
  • Radovi istraživača (Inovacioni centar) / Researchers’ publications (Innovation Centre)
  • View Item
  •   TechnoRep
  • Inovacioni centar
  • Radovi istraživača (Inovacioni centar) / Researchers’ publications (Innovation Centre)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Removal of Nickel Ions from Aqueous Solutions by 2-Hydroxyethyl Acrylate/Itaconic Acid Hydrogels Optimized with Response Surface Methodology

Thumbnail
2021
Removal_of_nickel_ions_pub_2021.pdf (31.89Mb)
Authors
Antić, Katarina
Onjia, Antonije
Vasiljevic-Radovic, Dana
Veličković, Zlate
Tomić, Simonida
Article (Published version)
Metadata
Show full item record
Abstract
The adsorption of Ni2+ ions from water solutions by using hydrogels based on 2-hydroxyethyl acrylate (HEA) and itaconic acid (IA) was studied. Hydrogel synthesis was optimized with response surface methodology (RSM). The hydrogel with the best adsorption capacity towards Ni2+ ions was chosen for further experiments. The hydrogel was characterized by Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM) and atomic force microscopy (AFM) analysis before and after the adsorption of Ni2+ ions. Batch equilibrium experiments were conducted to investigate the influence of solution pH, hydrogel weight, ionic strength, adsorption time, temperature and initial concentration of nickel ions on the adsorption. Time-dependent adsorption fitted the best to the pseudo-second-order kinetic model. A thermodynamic study revealed that the adsorption was an exothermic and non-spontaneous process. Five isotherm models were studied, and the best fit was obtained with the Redlich-...Peterson model. Consecutive adsorption/desorption studies indicated that the HEA/IA hydrogel can be efficiently used as a sorbent for the removal of Ni2+ ions from the water solution. This study develops a potential adsorbent for the effective removal of trace nickel ions.

Keywords:
hydrogel / nickel removal / response surface methodology / itaconic acid / desorption
Source:
Gels, 2021, 7, 4
Funding / projects:
  • Dynamics of nonlinear physicochemical and biochemical systems with modeling and predicting of their behavior under nonequilibrium conditions (RS-172015)
  • Synthesis and characterization of novel functional polymers and polymeric nanocomposites (RS-172062)

DOI: 10.3390/gels7040225

ISSN: 2310-2861

PubMed: 34842699

WoS: 000737766900001

Scopus: 2-s2.0-85119950841
[ Google Scholar ]
2
URI
http://TechnoRep.tmf.bg.ac.rs/handle/123456789/4784
Collections
  • Radovi istraživača (Inovacioni centar) / Researchers’ publications (Innovation Centre)
  • Radovi istraživača / Researchers’ publications (TMF)
Institution/Community
Inovacioni centar
TY  - JOUR
AU  - Antić, Katarina
AU  - Onjia, Antonije
AU  - Vasiljevic-Radovic, Dana
AU  - Veličković, Zlate
AU  - Tomić, Simonida
PY  - 2021
UR  - http://TechnoRep.tmf.bg.ac.rs/handle/123456789/4784
AB  - The adsorption of Ni2+ ions from water solutions by using hydrogels based on 2-hydroxyethyl acrylate (HEA) and itaconic acid (IA) was studied. Hydrogel synthesis was optimized with response surface methodology (RSM). The hydrogel with the best adsorption capacity towards Ni2+ ions was chosen for further experiments. The hydrogel was characterized by Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM) and atomic force microscopy (AFM) analysis before and after the adsorption of Ni2+ ions. Batch equilibrium experiments were conducted to investigate the influence of solution pH, hydrogel weight, ionic strength, adsorption time, temperature and initial concentration of nickel ions on the adsorption. Time-dependent adsorption fitted the best to the pseudo-second-order kinetic model. A thermodynamic study revealed that the adsorption was an exothermic and non-spontaneous process. Five isotherm models were studied, and the best fit was obtained with the Redlich-Peterson model. Consecutive adsorption/desorption studies indicated that the HEA/IA hydrogel can be efficiently used as a sorbent for the removal of Ni2+ ions from the water solution. This study develops a potential adsorbent for the effective removal of trace nickel ions.
T2  - Gels
T1  - Removal of Nickel Ions from Aqueous Solutions by 2-Hydroxyethyl Acrylate/Itaconic Acid Hydrogels Optimized with Response Surface Methodology
IS  - 4
VL  - 7
DO  - 10.3390/gels7040225
ER  - 
@article{
author = "Antić, Katarina and Onjia, Antonije and Vasiljevic-Radovic, Dana and Veličković, Zlate and Tomić, Simonida",
year = "2021",
abstract = "The adsorption of Ni2+ ions from water solutions by using hydrogels based on 2-hydroxyethyl acrylate (HEA) and itaconic acid (IA) was studied. Hydrogel synthesis was optimized with response surface methodology (RSM). The hydrogel with the best adsorption capacity towards Ni2+ ions was chosen for further experiments. The hydrogel was characterized by Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM) and atomic force microscopy (AFM) analysis before and after the adsorption of Ni2+ ions. Batch equilibrium experiments were conducted to investigate the influence of solution pH, hydrogel weight, ionic strength, adsorption time, temperature and initial concentration of nickel ions on the adsorption. Time-dependent adsorption fitted the best to the pseudo-second-order kinetic model. A thermodynamic study revealed that the adsorption was an exothermic and non-spontaneous process. Five isotherm models were studied, and the best fit was obtained with the Redlich-Peterson model. Consecutive adsorption/desorption studies indicated that the HEA/IA hydrogel can be efficiently used as a sorbent for the removal of Ni2+ ions from the water solution. This study develops a potential adsorbent for the effective removal of trace nickel ions.",
journal = "Gels",
title = "Removal of Nickel Ions from Aqueous Solutions by 2-Hydroxyethyl Acrylate/Itaconic Acid Hydrogels Optimized with Response Surface Methodology",
number = "4",
volume = "7",
doi = "10.3390/gels7040225"
}
Antić, K., Onjia, A., Vasiljevic-Radovic, D., Veličković, Z.,& Tomić, S.. (2021). Removal of Nickel Ions from Aqueous Solutions by 2-Hydroxyethyl Acrylate/Itaconic Acid Hydrogels Optimized with Response Surface Methodology. in Gels, 7(4).
https://doi.org/10.3390/gels7040225
Antić K, Onjia A, Vasiljevic-Radovic D, Veličković Z, Tomić S. Removal of Nickel Ions from Aqueous Solutions by 2-Hydroxyethyl Acrylate/Itaconic Acid Hydrogels Optimized with Response Surface Methodology. in Gels. 2021;7(4).
doi:10.3390/gels7040225 .
Antić, Katarina, Onjia, Antonije, Vasiljevic-Radovic, Dana, Veličković, Zlate, Tomić, Simonida, "Removal of Nickel Ions from Aqueous Solutions by 2-Hydroxyethyl Acrylate/Itaconic Acid Hydrogels Optimized with Response Surface Methodology" in Gels, 7, no. 4 (2021),
https://doi.org/10.3390/gels7040225 . .

DSpace software copyright © 2002-2015  DuraSpace
About TechnoRep | Send Feedback

OpenAIRERCUB
 

 

All of DSpaceInstitutions/communitiesAuthorsTitlesSubjectsThis institutionAuthorsTitlesSubjects

Statistics

View Usage Statistics

DSpace software copyright © 2002-2015  DuraSpace
About TechnoRep | Send Feedback

OpenAIRERCUB