TechnoRep - Faculty of Technology and Metallurgy Repository
University of Belgrade - Faculty of Technology and Metallurgy
    • English
    • Српски
    • Српски (Serbia)
  • English 
    • English
    • Serbian (Cyrillic)
    • Serbian (Latin)
  • Login
View Item 
  •   TechnoRep
  • Tehnološko-metalurški fakultet
  • Radovi istraživača / Researchers’ publications (TMF)
  • View Item
  •   TechnoRep
  • Tehnološko-metalurški fakultet
  • Radovi istraživača / Researchers’ publications (TMF)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Welded joint geometry effect on fatigue crack growth resistance in different metallic materials

Authorized Users Only
2021
Authors
Sedmak, Aleksandar
Hemer, Abubkr
Sedmak, Simon A.
Milović, Ljubica
Grbovic, Aleksandar
Cabrilo, Aleksandar
Kljajin, Milan
Article (Published version)
Metadata
Show full item record
Abstract
Fatigue crack growth through different welded joint regions was investigated, in terms of welded joint geometry and fatigue crack position. In the first phase of investigation, numerical simulation of crack growth in a welded joint made of steel P460NL1 was performed using extended Finite Element Methods (xFEM). Numerical models employed Paris law, using experimentally determined coefficients for each welded joint zone. Weld geometry was varied by using different heat affected zone (HAZ) widths, i.e. fatigue crack lengths. The second stage involved similar numerical models with different material (Protac 500). Fatigue lives for regions in both models were then compared.
Keywords:
xFEM / Welded joint geometry / Fatigue crack growth rate / Paris coefficients
Source:
International Journal of Fatigue, 2021, 150
Funding / projects:
  • Developed new methods for diagnosis and examination mechanical structures (RS-35040)

DOI: 10.1016/j.ijfatigue.2021.106298

ISSN: 0142-1123

WoS: 000663091000004

Scopus: 2-s2.0-85109401534
[ Google Scholar ]
7
1
URI
http://TechnoRep.tmf.bg.ac.rs/handle/123456789/4910
Collections
  • Radovi istraživača / Researchers’ publications (TMF)
Institution/Community
Tehnološko-metalurški fakultet
TY  - JOUR
AU  - Sedmak, Aleksandar
AU  - Hemer, Abubkr
AU  - Sedmak, Simon A.
AU  - Milović, Ljubica
AU  - Grbovic, Aleksandar
AU  - Cabrilo, Aleksandar
AU  - Kljajin, Milan
PY  - 2021
UR  - http://TechnoRep.tmf.bg.ac.rs/handle/123456789/4910
AB  - Fatigue crack growth through different welded joint regions was investigated, in terms of welded joint geometry and fatigue crack position. In the first phase of investigation, numerical simulation of crack growth in a welded joint made of steel P460NL1 was performed using extended Finite Element Methods (xFEM). Numerical models employed Paris law, using experimentally determined coefficients for each welded joint zone. Weld geometry was varied by using different heat affected zone (HAZ) widths, i.e. fatigue crack lengths. The second stage involved similar numerical models with different material (Protac 500). Fatigue lives for regions in both models were then compared.
T2  - International Journal of Fatigue
T1  - Welded joint geometry effect on fatigue crack growth resistance in different metallic materials
VL  - 150
DO  - 10.1016/j.ijfatigue.2021.106298
ER  - 
@article{
author = "Sedmak, Aleksandar and Hemer, Abubkr and Sedmak, Simon A. and Milović, Ljubica and Grbovic, Aleksandar and Cabrilo, Aleksandar and Kljajin, Milan",
year = "2021",
abstract = "Fatigue crack growth through different welded joint regions was investigated, in terms of welded joint geometry and fatigue crack position. In the first phase of investigation, numerical simulation of crack growth in a welded joint made of steel P460NL1 was performed using extended Finite Element Methods (xFEM). Numerical models employed Paris law, using experimentally determined coefficients for each welded joint zone. Weld geometry was varied by using different heat affected zone (HAZ) widths, i.e. fatigue crack lengths. The second stage involved similar numerical models with different material (Protac 500). Fatigue lives for regions in both models were then compared.",
journal = "International Journal of Fatigue",
title = "Welded joint geometry effect on fatigue crack growth resistance in different metallic materials",
volume = "150",
doi = "10.1016/j.ijfatigue.2021.106298"
}
Sedmak, A., Hemer, A., Sedmak, S. A., Milović, L., Grbovic, A., Cabrilo, A.,& Kljajin, M.. (2021). Welded joint geometry effect on fatigue crack growth resistance in different metallic materials. in International Journal of Fatigue, 150.
https://doi.org/10.1016/j.ijfatigue.2021.106298
Sedmak A, Hemer A, Sedmak SA, Milović L, Grbovic A, Cabrilo A, Kljajin M. Welded joint geometry effect on fatigue crack growth resistance in different metallic materials. in International Journal of Fatigue. 2021;150.
doi:10.1016/j.ijfatigue.2021.106298 .
Sedmak, Aleksandar, Hemer, Abubkr, Sedmak, Simon A., Milović, Ljubica, Grbovic, Aleksandar, Cabrilo, Aleksandar, Kljajin, Milan, "Welded joint geometry effect on fatigue crack growth resistance in different metallic materials" in International Journal of Fatigue, 150 (2021),
https://doi.org/10.1016/j.ijfatigue.2021.106298 . .

DSpace software copyright © 2002-2015  DuraSpace
About TechnoRep | Send Feedback

OpenAIRERCUB
 

 

All of DSpaceInstitutions/communitiesAuthorsTitlesSubjectsThis institutionAuthorsTitlesSubjects

Statistics

View Usage Statistics

DSpace software copyright © 2002-2015  DuraSpace
About TechnoRep | Send Feedback

OpenAIRERCUB