TechnoRep - Faculty of Technology and Metallurgy Repository
University of Belgrade - Faculty of Technology and Metallurgy
    • English
    • Српски
    • Српски (Serbia)
  • English 
    • English
    • Serbian (Cyrillic)
    • Serbian (Latin)
  • Login
View Item 
  •   TechnoRep
  • Tehnološko-metalurški fakultet
  • Radovi istraživača / Researchers’ publications (TMF)
  • View Item
  •   TechnoRep
  • Tehnološko-metalurški fakultet
  • Radovi istraživača / Researchers’ publications (TMF)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Closing the loop: As(V) adsorption onto goethite impregnated coal-combustion fly ash as integral building materials

Authorized Users Only
2021
Authors
Đolić, Maja
Karanac, Milica
Radovanović, Dragana
Umicevic, Ana
Kapidzic, Ana
Veličković, Zlate
Marinković, Aleksandar
Kamberović, Željko
Article (Published version)
Metadata
Show full item record
Abstract
Fly and bottom ash(es) are the most abundant generated by-products of coal combustion in thermal power plants. This investigation offers a sustainable solution of a double and circular use of industrial waste material in civil engineering practices; i.e., fly ash (FA) as an eco-efficiently, low-cost material for As(V) adsorption, as well as an additive in building materials. A goethite impregnated sample (FAG) was synthesized and optimized using the column precipitation procedure, then thoroughly, structurally and morphologically characterized using liquid nitrogen porosimetry (BET), X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM) and Mossbauer spectroscopy (MS) techniques. The data from the equilibrium adsorption were fitted by linear and non-linear isotherm models; the optimal capacity of FAG/As(V) removal was calculated from the Langmuir model at 31.742 mg g(-1) for 45 degrees C. The kinetics of adsorption process has shown... the pseudo-second-order kinetic model (PSO). The Weber-Morris model was applied to determine the intra-particle diffusion as a limiting step of reaction. The low pH dependant FAG leaching confirmed the efficient use of non-hazardous waste material in arsenic removal; furthermore, it also validated the new added value of the used/spent adsorbent as an adhesive in building materials possessing advanced mechanical properties.

Keywords:
Fly ash/Goethite / Arsenate removal / Waste minimization / Leaching / Construction material
Source:
Journal of Cleaner Production, 2021, 303
Funding / projects:
  • Ministry of Education, Science and Technological Development, Republic of Serbia, Grant no. 200135 (University of Belgrade, Faculty of Technology and Metallurgy) (RS-200135)

DOI: 10.1016/j.jclepro.2021.126924

ISSN: 0959-6526

WoS: 000655680000010

Scopus: 2-s2.0-85104387674
[ Google Scholar ]
11
URI
http://TechnoRep.tmf.bg.ac.rs/handle/123456789/4916
Collections
  • Radovi istraživača / Researchers’ publications (TMF)
  • Radovi istraživača (Inovacioni centar) / Researchers’ publications (Innovation Centre)
Institution/Community
Tehnološko-metalurški fakultet
TY  - JOUR
AU  - Đolić, Maja
AU  - Karanac, Milica
AU  - Radovanović, Dragana
AU  - Umicevic, Ana
AU  - Kapidzic, Ana
AU  - Veličković, Zlate
AU  - Marinković, Aleksandar
AU  - Kamberović, Željko
PY  - 2021
UR  - http://TechnoRep.tmf.bg.ac.rs/handle/123456789/4916
AB  - Fly and bottom ash(es) are the most abundant generated by-products of coal combustion in thermal power plants. This investigation offers a sustainable solution of a double and circular use of industrial waste material in civil engineering practices; i.e., fly ash (FA) as an eco-efficiently, low-cost material for As(V) adsorption, as well as an additive in building materials. A goethite impregnated sample (FAG) was synthesized and optimized using the column precipitation procedure, then thoroughly, structurally and morphologically characterized using liquid nitrogen porosimetry (BET), X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM) and Mossbauer spectroscopy (MS) techniques. The data from the equilibrium adsorption were fitted by linear and non-linear isotherm models; the optimal capacity of FAG/As(V) removal was calculated from the Langmuir model at 31.742 mg g(-1) for 45 degrees C. The kinetics of adsorption process has shown the pseudo-second-order kinetic model (PSO). The Weber-Morris model was applied to determine the intra-particle diffusion as a limiting step of reaction. The low pH dependant FAG leaching confirmed the efficient use of non-hazardous waste material in arsenic removal; furthermore, it also validated the new added value of the used/spent adsorbent as an adhesive in building materials possessing advanced mechanical properties.
T2  - Journal of Cleaner Production
T1  - Closing the loop: As(V) adsorption onto goethite impregnated coal-combustion fly ash as integral building materials
VL  - 303
DO  - 10.1016/j.jclepro.2021.126924
ER  - 
@article{
author = "Đolić, Maja and Karanac, Milica and Radovanović, Dragana and Umicevic, Ana and Kapidzic, Ana and Veličković, Zlate and Marinković, Aleksandar and Kamberović, Željko",
year = "2021",
abstract = "Fly and bottom ash(es) are the most abundant generated by-products of coal combustion in thermal power plants. This investigation offers a sustainable solution of a double and circular use of industrial waste material in civil engineering practices; i.e., fly ash (FA) as an eco-efficiently, low-cost material for As(V) adsorption, as well as an additive in building materials. A goethite impregnated sample (FAG) was synthesized and optimized using the column precipitation procedure, then thoroughly, structurally and morphologically characterized using liquid nitrogen porosimetry (BET), X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM) and Mossbauer spectroscopy (MS) techniques. The data from the equilibrium adsorption were fitted by linear and non-linear isotherm models; the optimal capacity of FAG/As(V) removal was calculated from the Langmuir model at 31.742 mg g(-1) for 45 degrees C. The kinetics of adsorption process has shown the pseudo-second-order kinetic model (PSO). The Weber-Morris model was applied to determine the intra-particle diffusion as a limiting step of reaction. The low pH dependant FAG leaching confirmed the efficient use of non-hazardous waste material in arsenic removal; furthermore, it also validated the new added value of the used/spent adsorbent as an adhesive in building materials possessing advanced mechanical properties.",
journal = "Journal of Cleaner Production",
title = "Closing the loop: As(V) adsorption onto goethite impregnated coal-combustion fly ash as integral building materials",
volume = "303",
doi = "10.1016/j.jclepro.2021.126924"
}
Đolić, M., Karanac, M., Radovanović, D., Umicevic, A., Kapidzic, A., Veličković, Z., Marinković, A.,& Kamberović, Ž.. (2021). Closing the loop: As(V) adsorption onto goethite impregnated coal-combustion fly ash as integral building materials. in Journal of Cleaner Production, 303.
https://doi.org/10.1016/j.jclepro.2021.126924
Đolić M, Karanac M, Radovanović D, Umicevic A, Kapidzic A, Veličković Z, Marinković A, Kamberović Ž. Closing the loop: As(V) adsorption onto goethite impregnated coal-combustion fly ash as integral building materials. in Journal of Cleaner Production. 2021;303.
doi:10.1016/j.jclepro.2021.126924 .
Đolić, Maja, Karanac, Milica, Radovanović, Dragana, Umicevic, Ana, Kapidzic, Ana, Veličković, Zlate, Marinković, Aleksandar, Kamberović, Željko, "Closing the loop: As(V) adsorption onto goethite impregnated coal-combustion fly ash as integral building materials" in Journal of Cleaner Production, 303 (2021),
https://doi.org/10.1016/j.jclepro.2021.126924 . .

DSpace software copyright © 2002-2015  DuraSpace
About TechnoRep | Send Feedback

OpenAIRERCUB
 

 

All of DSpaceInstitutions/communitiesAuthorsTitlesSubjectsThis institutionAuthorsTitlesSubjects

Statistics

View Usage Statistics

DSpace software copyright © 2002-2015  DuraSpace
About TechnoRep | Send Feedback

OpenAIRERCUB