TechnoRep - Faculty of Technology and Metallurgy Repository
University of Belgrade - Faculty of Technology and Metallurgy
    • English
    • Српски
    • Српски (Serbia)
  • English 
    • English
    • Serbian (Cyrillic)
    • Serbian (Latin)
  • Login
View Item 
  •   TechnoRep
  • Inovacioni centar
  • Radovi istraživača (Inovacioni centar) / Researchers’ publications (Innovation Centre)
  • View Item
  •   TechnoRep
  • Inovacioni centar
  • Radovi istraživača (Inovacioni centar) / Researchers’ publications (Innovation Centre)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Moisture absorption characteristics and effects on mechanical properties of Kolon/epoxy composites

Authorized Users Only
2021
Authors
Obradović, Vera
Simic, Danica
Sejkot, Petr
Machalicka, Klara, V
Vokac, Miroslav
Article (Published version)
Metadata
Show full item record
Abstract
Para-aramid fibers (Kolon) are high performance polymeric fibers characterized by their high tenacity and impact resistance. They are used for the soft body armor structures in ballistics. In this study, the testing specimens were made from multilayered Kolon fabrics impregnated with epoxy resin where silicon carbide (SiC) microparticles or SiC nanofibers were added as reinforcement. The laminated composite samples were fabricated by hot compression and curing of epoxy resin. The tensile and impact strengths of the untreated specimens were compared with the ones that underwent water absorption in duration of 72 h (immersion or humidity) followed by desorption. The immersion of the specimens in water and exposure to high humidity (70%) were performed according to the ISO 62 standard while the tensile test was carried out in accordance with the ASTM D 3039 standard. In the end, the tensile test simulation of the laminated composite by using software Abaqus (R) was accomplished.
Keywords:
Kolon fibers / Kolon / epoxy composites / Water absorption / Tensile testing / Impact behavior
Source:
Current Applied Physics, 2021, 26, 16-23
Funding / projects:
  • Ministry of Education, Science and Technological Development, Republic of Serbia, Grant no. 200287 (Innovation Center of the Faculty of Technology and Metallurgy) (RS-200287)
  • Ministry of Education, Science and Technological Development, Republic of Serbia, Grant no. 200325 (Military Technical Institute - MTI, Belgrade) (RS-200325)

DOI: 10.1016/j.cap.2021.03.015

ISSN: 1567-1739

WoS: 000648518300003

Scopus: 2-s2.0-85103685022
[ Google Scholar ]
5
URI
http://TechnoRep.tmf.bg.ac.rs/handle/123456789/4929
Collections
  • Radovi istraživača (Inovacioni centar) / Researchers’ publications (Innovation Centre)
Institution/Community
Inovacioni centar
TY  - JOUR
AU  - Obradović, Vera
AU  - Simic, Danica
AU  - Sejkot, Petr
AU  - Machalicka, Klara, V
AU  - Vokac, Miroslav
PY  - 2021
UR  - http://TechnoRep.tmf.bg.ac.rs/handle/123456789/4929
AB  - Para-aramid fibers (Kolon) are high performance polymeric fibers characterized by their high tenacity and impact resistance. They are used for the soft body armor structures in ballistics. In this study, the testing specimens were made from multilayered Kolon fabrics impregnated with epoxy resin where silicon carbide (SiC) microparticles or SiC nanofibers were added as reinforcement. The laminated composite samples were fabricated by hot compression and curing of epoxy resin. The tensile and impact strengths of the untreated specimens were compared with the ones that underwent water absorption in duration of 72 h (immersion or humidity) followed by desorption. The immersion of the specimens in water and exposure to high humidity (70%) were performed according to the ISO 62 standard while the tensile test was carried out in accordance with the ASTM D 3039 standard. In the end, the tensile test simulation of the laminated composite by using software Abaqus (R) was accomplished.
T2  - Current Applied Physics
T1  - Moisture absorption characteristics and effects on mechanical properties of Kolon/epoxy composites
EP  - 23
SP  - 16
VL  - 26
DO  - 10.1016/j.cap.2021.03.015
ER  - 
@article{
author = "Obradović, Vera and Simic, Danica and Sejkot, Petr and Machalicka, Klara, V and Vokac, Miroslav",
year = "2021",
abstract = "Para-aramid fibers (Kolon) are high performance polymeric fibers characterized by their high tenacity and impact resistance. They are used for the soft body armor structures in ballistics. In this study, the testing specimens were made from multilayered Kolon fabrics impregnated with epoxy resin where silicon carbide (SiC) microparticles or SiC nanofibers were added as reinforcement. The laminated composite samples were fabricated by hot compression and curing of epoxy resin. The tensile and impact strengths of the untreated specimens were compared with the ones that underwent water absorption in duration of 72 h (immersion or humidity) followed by desorption. The immersion of the specimens in water and exposure to high humidity (70%) were performed according to the ISO 62 standard while the tensile test was carried out in accordance with the ASTM D 3039 standard. In the end, the tensile test simulation of the laminated composite by using software Abaqus (R) was accomplished.",
journal = "Current Applied Physics",
title = "Moisture absorption characteristics and effects on mechanical properties of Kolon/epoxy composites",
pages = "23-16",
volume = "26",
doi = "10.1016/j.cap.2021.03.015"
}
Obradović, V., Simic, D., Sejkot, P., Machalicka, K. V.,& Vokac, M.. (2021). Moisture absorption characteristics and effects on mechanical properties of Kolon/epoxy composites. in Current Applied Physics, 26, 16-23.
https://doi.org/10.1016/j.cap.2021.03.015
Obradović V, Simic D, Sejkot P, Machalicka KV, Vokac M. Moisture absorption characteristics and effects on mechanical properties of Kolon/epoxy composites. in Current Applied Physics. 2021;26:16-23.
doi:10.1016/j.cap.2021.03.015 .
Obradović, Vera, Simic, Danica, Sejkot, Petr, Machalicka, Klara, V, Vokac, Miroslav, "Moisture absorption characteristics and effects on mechanical properties of Kolon/epoxy composites" in Current Applied Physics, 26 (2021):16-23,
https://doi.org/10.1016/j.cap.2021.03.015 . .

DSpace software copyright © 2002-2015  DuraSpace
About TechnoRep | Send Feedback

OpenAIRERCUB
 

 

All of DSpaceInstitutions/communitiesAuthorsTitlesSubjectsThis institutionAuthorsTitlesSubjects

Statistics

View Usage Statistics

DSpace software copyright © 2002-2015  DuraSpace
About TechnoRep | Send Feedback

OpenAIRERCUB