TechnoRep - Faculty of Technology and Metallurgy Repository
University of Belgrade - Faculty of Technology and Metallurgy
    • English
    • Српски
    • Српски (Serbia)
  • English 
    • English
    • Serbian (Cyrillic)
    • Serbian (Latin)
  • Login
View Item 
  •   TechnoRep
  • Inovacioni centar
  • Radovi istraživača (Inovacioni centar) / Researchers’ publications (Innovation Centre)
  • View Item
  •   TechnoRep
  • Inovacioni centar
  • Radovi istraživača (Inovacioni centar) / Researchers’ publications (Innovation Centre)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Tailored Adhesion Properties of Acrylate Adhesives on Al Alloys by the Addition of Mn-Al-LDH

Thumbnail
2021
Tailored_adhesion_properties_pub_2021.pdf (4.890Mb)
Authors
Tomić, Nataša
Saleh, Mohamed Nasr
Vuksanović, Marija M.
Egelja, Adela
Obradović, Vera
Marinković, Aleksandar
Jančić-Heinemann, Radmila
Article (Published version)
Metadata
Show full item record
Abstract
The goal of this study was to investigate the effect of the structure of Mn-Al layered double hydroxide (LDH) on the adhesion behavior of composite adhesives on two Al alloys (L3005 and L8079). The composite adhesives were made out of the UV-curing Bisphenol A glycidylmethacrylate/triethylene glycol dimethacrylate (BT) as polymer matrix and the addition of 1, 3, and 5 wt. % of Mn-Al LDH as adhesion enhancers. Adhesion was evaluated by using the micro Vickers hardness testing procedure. The wetting angle of composite adhesives to the Al substrates was measured and compared to the adhesion parameter b obtained from the microhardness tests. The highest increase in adhesion was observed for BT with 5 wt. % of Mn-Al LDH on L3005 substrate, which was more than 15 times higher than the adhesion for the neat BT. The morphological segregation of composite adhesives after the contact with Al substrates was examined by optical microscopy and a higher compatibility of Mn-Al LDH particles with L300...5 substrate was found. The methods used for the adhesion properties assessment suggested that the Mn-Al LDH was the best adhesion enhancer of the BT matrix for L3005 substrate containing a higher content of Mn and surface hydroxyl groups.

Keywords:
layer double hydroxide / composite adhesive / adhesion / interface / aluminum
Source:
Polymers, 2021, 13, 9
Funding / projects:
  • Ministry of Education, Science and Technological Development, Republic of Serbia, Grant no. 200135 (University of Belgrade, Faculty of Technology and Metallurgy) (RS-200135)
  • Ministry of Education, Science and Technological Development, Republic of Serbia, Grant no. 200287 (Innovation Center of the Faculty of Technology and Metallurgy) (RS-200287)

DOI: 10.3390/polym13091525

ISSN: 2073-4360

PubMed: 34068553

WoS: 000650714500001

Scopus: 2-s2.0-85106589894
[ Google Scholar ]
1
1
URI
http://TechnoRep.tmf.bg.ac.rs/handle/123456789/4931
Collections
  • Radovi istraživača (Inovacioni centar) / Researchers’ publications (Innovation Centre)
  • Radovi istraživača / Researchers’ publications (TMF)
Institution/Community
Inovacioni centar
TY  - JOUR
AU  - Tomić, Nataša
AU  - Saleh, Mohamed Nasr
AU  - Vuksanović, Marija M.
AU  - Egelja, Adela
AU  - Obradović, Vera
AU  - Marinković, Aleksandar
AU  - Jančić-Heinemann, Radmila
PY  - 2021
UR  - http://TechnoRep.tmf.bg.ac.rs/handle/123456789/4931
AB  - The goal of this study was to investigate the effect of the structure of Mn-Al layered double hydroxide (LDH) on the adhesion behavior of composite adhesives on two Al alloys (L3005 and L8079). The composite adhesives were made out of the UV-curing Bisphenol A glycidylmethacrylate/triethylene glycol dimethacrylate (BT) as polymer matrix and the addition of 1, 3, and 5 wt. % of Mn-Al LDH as adhesion enhancers. Adhesion was evaluated by using the micro Vickers hardness testing procedure. The wetting angle of composite adhesives to the Al substrates was measured and compared to the adhesion parameter b obtained from the microhardness tests. The highest increase in adhesion was observed for BT with 5 wt. % of Mn-Al LDH on L3005 substrate, which was more than 15 times higher than the adhesion for the neat BT. The morphological segregation of composite adhesives after the contact with Al substrates was examined by optical microscopy and a higher compatibility of Mn-Al LDH particles with L3005 substrate was found. The methods used for the adhesion properties assessment suggested that the Mn-Al LDH was the best adhesion enhancer of the BT matrix for L3005 substrate containing a higher content of Mn and surface hydroxyl groups.
T2  - Polymers
T1  - Tailored Adhesion Properties of Acrylate Adhesives on Al Alloys by the Addition of Mn-Al-LDH
IS  - 9
VL  - 13
DO  - 10.3390/polym13091525
ER  - 
@article{
author = "Tomić, Nataša and Saleh, Mohamed Nasr and Vuksanović, Marija M. and Egelja, Adela and Obradović, Vera and Marinković, Aleksandar and Jančić-Heinemann, Radmila",
year = "2021",
abstract = "The goal of this study was to investigate the effect of the structure of Mn-Al layered double hydroxide (LDH) on the adhesion behavior of composite adhesives on two Al alloys (L3005 and L8079). The composite adhesives were made out of the UV-curing Bisphenol A glycidylmethacrylate/triethylene glycol dimethacrylate (BT) as polymer matrix and the addition of 1, 3, and 5 wt. % of Mn-Al LDH as adhesion enhancers. Adhesion was evaluated by using the micro Vickers hardness testing procedure. The wetting angle of composite adhesives to the Al substrates was measured and compared to the adhesion parameter b obtained from the microhardness tests. The highest increase in adhesion was observed for BT with 5 wt. % of Mn-Al LDH on L3005 substrate, which was more than 15 times higher than the adhesion for the neat BT. The morphological segregation of composite adhesives after the contact with Al substrates was examined by optical microscopy and a higher compatibility of Mn-Al LDH particles with L3005 substrate was found. The methods used for the adhesion properties assessment suggested that the Mn-Al LDH was the best adhesion enhancer of the BT matrix for L3005 substrate containing a higher content of Mn and surface hydroxyl groups.",
journal = "Polymers",
title = "Tailored Adhesion Properties of Acrylate Adhesives on Al Alloys by the Addition of Mn-Al-LDH",
number = "9",
volume = "13",
doi = "10.3390/polym13091525"
}
Tomić, N., Saleh, M. N., Vuksanović, M. M., Egelja, A., Obradović, V., Marinković, A.,& Jančić-Heinemann, R.. (2021). Tailored Adhesion Properties of Acrylate Adhesives on Al Alloys by the Addition of Mn-Al-LDH. in Polymers, 13(9).
https://doi.org/10.3390/polym13091525
Tomić N, Saleh MN, Vuksanović MM, Egelja A, Obradović V, Marinković A, Jančić-Heinemann R. Tailored Adhesion Properties of Acrylate Adhesives on Al Alloys by the Addition of Mn-Al-LDH. in Polymers. 2021;13(9).
doi:10.3390/polym13091525 .
Tomić, Nataša, Saleh, Mohamed Nasr, Vuksanović, Marija M., Egelja, Adela, Obradović, Vera, Marinković, Aleksandar, Jančić-Heinemann, Radmila, "Tailored Adhesion Properties of Acrylate Adhesives on Al Alloys by the Addition of Mn-Al-LDH" in Polymers, 13, no. 9 (2021),
https://doi.org/10.3390/polym13091525 . .

DSpace software copyright © 2002-2015  DuraSpace
About TechnoRep | Send Feedback

OpenAIRERCUB
 

 

All of DSpaceInstitutions/communitiesAuthorsTitlesSubjectsThis institutionAuthorsTitlesSubjects

Statistics

View Usage Statistics

DSpace software copyright © 2002-2015  DuraSpace
About TechnoRep | Send Feedback

OpenAIRERCUB