TechnoRep - Faculty of Technology and Metallurgy Repository
University of Belgrade - Faculty of Technology and Metallurgy
    • English
    • Српски
    • Српски (Serbia)
  • English 
    • English
    • Serbian (Cyrillic)
    • Serbian (Latin)
  • Login
View Item 
  •   TechnoRep
  • Inovacioni centar
  • Radovi istraživača (Inovacioni centar) / Researchers’ publications (Innovation Centre)
  • View Item
  •   TechnoRep
  • Inovacioni centar
  • Radovi istraživača (Inovacioni centar) / Researchers’ publications (Innovation Centre)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Strong and tough, pH sensible, interpenetrating network hydrogels based on gelatin and poly(methacrylic acid)

Authorized Users Only
2022
Authors
Ugrinović, Vukašin
Panić, Vesna
Spasojević, Pavle
Seslija, Sanja
Bozic, Bojan
Petrović, Rada
Janaćković, Đorđe
Veljović, Đorđe
Article (Published version)
Metadata
Show full item record
Abstract
Hydrogels are promising materials for biomedical applications due to highly hydrated, porous, permeable structure with possibility to accommodate living cells, drugs, or bioactive factors. In this paper, we reported poly(methacrylic acid) (PMAA)/gelatin IPN hydrogels, synthesized by free-radical polymerization, with adjustable mechanical, structural, physicochemical, and biological characteristics. The influence of methacrylic acid (MAA), gelatin, and cross-linker in the precursor solution on hydrogels properties was investigated. The increasing concentration of MAA, gelatin, and cross-linker led to better mechanical properties, lower porosity, and water content. The compressive mechanical properties of hydrogels were significantly better in comparison to a single-network PMAA hydrogel, while the obtained compressive strength values up to 16 MPa were comparable with tough hydrogels. The increasing concentration of MAA and cross-linker reduced fatigue resistance and degradability, while... the increase in gelatin content acted in the opposite way. Swelling tests in different pH conditions demonstrated strong pH-sensibility of the hydrogels, which was more pronounced as MAA concentration was higher, and gelatin and cross-linker concentrations were lower. In addition, the hydrogels strongly promoted the proliferation of human periodontal ligament stem cells and MRC-5 cells as assayed by MTT assay.

Keywords:
gelatin / IPN hydrogel / poly(methacrylic acid) / tissue engineering
Source:
Polymer Engineering and Science, 2022
Funding / projects:
  • Ministry of Education, Science and Technological Development, Republic of Serbia, Grant no. 200026 (University of Belgrade, Institute of Chemistry, Technology and Metallurgy - IChTM) (RS-200026)
  • Ministry of Education, Science and Technological Development, Republic of Serbia, Grant no. 200135 (University of Belgrade, Faculty of Technology and Metallurgy) (RS-200135)
  • Ministry of Education, Science and Technological Development, Republic of Serbia, Grant no. 200178 (University of Belgrade, Faculty of Biology) (RS-200178)
  • Ministry of Education, Science and Technological Development, Republic of Serbia, Grant no. 200287 (Innovation Center of the Faculty of Technology and Metallurgy) (RS-200287)

DOI: 10.1002/pen.25870

ISSN: 0032-3888

WoS: 000734793000001

Scopus: 2-s2.0-85122011824
[ Google Scholar ]
4
URI
http://TechnoRep.tmf.bg.ac.rs/handle/123456789/4984
Collections
  • Radovi istraživača (Inovacioni centar) / Researchers’ publications (Innovation Centre)
  • Radovi istraživača / Researchers’ publications (TMF)
Institution/Community
Inovacioni centar
TY  - JOUR
AU  - Ugrinović, Vukašin
AU  - Panić, Vesna
AU  - Spasojević, Pavle
AU  - Seslija, Sanja
AU  - Bozic, Bojan
AU  - Petrović, Rada
AU  - Janaćković, Đorđe
AU  - Veljović, Đorđe
PY  - 2022
UR  - http://TechnoRep.tmf.bg.ac.rs/handle/123456789/4984
AB  - Hydrogels are promising materials for biomedical applications due to highly hydrated, porous, permeable structure with possibility to accommodate living cells, drugs, or bioactive factors. In this paper, we reported poly(methacrylic acid) (PMAA)/gelatin IPN hydrogels, synthesized by free-radical polymerization, with adjustable mechanical, structural, physicochemical, and biological characteristics. The influence of methacrylic acid (MAA), gelatin, and cross-linker in the precursor solution on hydrogels properties was investigated. The increasing concentration of MAA, gelatin, and cross-linker led to better mechanical properties, lower porosity, and water content. The compressive mechanical properties of hydrogels were significantly better in comparison to a single-network PMAA hydrogel, while the obtained compressive strength values up to 16 MPa were comparable with tough hydrogels. The increasing concentration of MAA and cross-linker reduced fatigue resistance and degradability, while the increase in gelatin content acted in the opposite way. Swelling tests in different pH conditions demonstrated strong pH-sensibility of the hydrogels, which was more pronounced as MAA concentration was higher, and gelatin and cross-linker concentrations were lower. In addition, the hydrogels strongly promoted the proliferation of human periodontal ligament stem cells and MRC-5 cells as assayed by MTT assay.
T2  - Polymer Engineering and Science
T1  - Strong and tough, pH sensible, interpenetrating network hydrogels based on gelatin and poly(methacrylic acid)
DO  - 10.1002/pen.25870
ER  - 
@article{
author = "Ugrinović, Vukašin and Panić, Vesna and Spasojević, Pavle and Seslija, Sanja and Bozic, Bojan and Petrović, Rada and Janaćković, Đorđe and Veljović, Đorđe",
year = "2022",
abstract = "Hydrogels are promising materials for biomedical applications due to highly hydrated, porous, permeable structure with possibility to accommodate living cells, drugs, or bioactive factors. In this paper, we reported poly(methacrylic acid) (PMAA)/gelatin IPN hydrogels, synthesized by free-radical polymerization, with adjustable mechanical, structural, physicochemical, and biological characteristics. The influence of methacrylic acid (MAA), gelatin, and cross-linker in the precursor solution on hydrogels properties was investigated. The increasing concentration of MAA, gelatin, and cross-linker led to better mechanical properties, lower porosity, and water content. The compressive mechanical properties of hydrogels were significantly better in comparison to a single-network PMAA hydrogel, while the obtained compressive strength values up to 16 MPa were comparable with tough hydrogels. The increasing concentration of MAA and cross-linker reduced fatigue resistance and degradability, while the increase in gelatin content acted in the opposite way. Swelling tests in different pH conditions demonstrated strong pH-sensibility of the hydrogels, which was more pronounced as MAA concentration was higher, and gelatin and cross-linker concentrations were lower. In addition, the hydrogels strongly promoted the proliferation of human periodontal ligament stem cells and MRC-5 cells as assayed by MTT assay.",
journal = "Polymer Engineering and Science",
title = "Strong and tough, pH sensible, interpenetrating network hydrogels based on gelatin and poly(methacrylic acid)",
doi = "10.1002/pen.25870"
}
Ugrinović, V., Panić, V., Spasojević, P., Seslija, S., Bozic, B., Petrović, R., Janaćković, Đ.,& Veljović, Đ.. (2022). Strong and tough, pH sensible, interpenetrating network hydrogels based on gelatin and poly(methacrylic acid). in Polymer Engineering and Science.
https://doi.org/10.1002/pen.25870
Ugrinović V, Panić V, Spasojević P, Seslija S, Bozic B, Petrović R, Janaćković Đ, Veljović Đ. Strong and tough, pH sensible, interpenetrating network hydrogels based on gelatin and poly(methacrylic acid). in Polymer Engineering and Science. 2022;.
doi:10.1002/pen.25870 .
Ugrinović, Vukašin, Panić, Vesna, Spasojević, Pavle, Seslija, Sanja, Bozic, Bojan, Petrović, Rada, Janaćković, Đorđe, Veljović, Đorđe, "Strong and tough, pH sensible, interpenetrating network hydrogels based on gelatin and poly(methacrylic acid)" in Polymer Engineering and Science (2022),
https://doi.org/10.1002/pen.25870 . .

DSpace software copyright © 2002-2015  DuraSpace
About TechnoRep | Send Feedback

OpenAIRERCUB
 

 

All of DSpaceInstitutions/communitiesAuthorsTitlesSubjectsThis institutionAuthorsTitlesSubjects

Statistics

View Usage Statistics

DSpace software copyright © 2002-2015  DuraSpace
About TechnoRep | Send Feedback

OpenAIRERCUB