TechnoRep - Faculty of Technology and Metallurgy Repository
University of Belgrade - Faculty of Technology and Metallurgy
    • English
    • Српски
    • Српски (Serbia)
  • English 
    • English
    • Serbian (Cyrillic)
    • Serbian (Latin)
  • Login
View Item 
  •   TechnoRep
  • Inovacioni centar
  • Radovi istraživača (Inovacioni centar) / Researchers’ publications (Innovation Centre)
  • View Item
  •   TechnoRep
  • Inovacioni centar
  • Radovi istraživača (Inovacioni centar) / Researchers’ publications (Innovation Centre)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Simple and effective one-step production of high-quality mesoporous pyrolytic char from waste tires: Rhodamine B adsorption kinetics and density functional theory (DFT) study

Authorized Users Only
2022
Authors
Pijovic, Milena
Manic, Nebojsa
Vasic-Anicijevic, Dragana
Krstic, Aleksandar
Mitric, Miodrag
Matić, Tamara
Jankovic, Bojan
Article (Published version)
Metadata
Show full item record
Abstract
Pyrolytic tire (PT) chars were first produced from waste car tires (WCT) through carbonization process at 800 degrees C, for different retention times. Then, best PT-char sample by its physicochemical properties (WCT 800(1 h)) was further tested for its ability to adsorb Rhodamine B (RhB) dye from aqueous solutions. Structural characterization of synthesized material showed existence of graphene-based material, with average pore diameter of 22.8 nm and specific surface area of 55.8 m2.g- 1. Obtained carbon material meets specifications of commercial carbon black (CB). The yield of 33.6% of CB recovered has been achieved. Under the optimal conditions, 99.57% of RhB was removed. Adsorption of RhB obeys pseudo second-order model and Langmuir isotherm model. DFT (the density functional theory) was revealed that effective bonding of RhB onto WCT 800 originates from pi-electron interactions with aromatic moieties and chemical (or at least the electrostatic) interactions, between positive nit...rogen and electron-rich surface groups.

Keywords:
Waste tires / Recycling / Pyrolysis / Graphene-based adsorbent / Surface properties / DFT
Source:
Diamond and Related Materials, 2022, 121
Funding / projects:
  • Ministry of Education, Science and Technological Development, Republic of Serbia, Grant no. 200017 (University of Belgrade, Institute of Nuclear Sciences 'Vinča', Belgrade-Vinča) (RS-200017)
  • Ministry of Education, Science and Technological Development, Republic of Serbia, Grant no. 200105 (University of Belgrade, Faculty of Mechanical Engineering) (RS-200105)

DOI: 10.1016/j.diamond.2021.108768

ISSN: 0925-9635

WoS: 000733634900004

Scopus: 2-s2.0-85121014167
[ Google Scholar ]
1
URI
http://TechnoRep.tmf.bg.ac.rs/handle/123456789/5015
Collections
  • Radovi istraživača (Inovacioni centar) / Researchers’ publications (Innovation Centre)
Institution/Community
Inovacioni centar
TY  - JOUR
AU  - Pijovic, Milena
AU  - Manic, Nebojsa
AU  - Vasic-Anicijevic, Dragana
AU  - Krstic, Aleksandar
AU  - Mitric, Miodrag
AU  - Matić, Tamara
AU  - Jankovic, Bojan
PY  - 2022
UR  - http://TechnoRep.tmf.bg.ac.rs/handle/123456789/5015
AB  - Pyrolytic tire (PT) chars were first produced from waste car tires (WCT) through carbonization process at 800 degrees C, for different retention times. Then, best PT-char sample by its physicochemical properties (WCT 800(1 h)) was further tested for its ability to adsorb Rhodamine B (RhB) dye from aqueous solutions. Structural characterization of synthesized material showed existence of graphene-based material, with average pore diameter of 22.8 nm and specific surface area of 55.8 m2.g- 1. Obtained carbon material meets specifications of commercial carbon black (CB). The yield of 33.6% of CB recovered has been achieved. Under the optimal conditions, 99.57% of RhB was removed. Adsorption of RhB obeys pseudo second-order model and Langmuir isotherm model. DFT (the density functional theory) was revealed that effective bonding of RhB onto WCT 800 originates from pi-electron interactions with aromatic moieties and chemical (or at least the electrostatic) interactions, between positive nitrogen and electron-rich surface groups.
T2  - Diamond and Related Materials
T1  - Simple and effective one-step production of high-quality mesoporous pyrolytic char from waste tires: Rhodamine B adsorption kinetics and density functional theory (DFT) study
VL  - 121
DO  - 10.1016/j.diamond.2021.108768
ER  - 
@article{
author = "Pijovic, Milena and Manic, Nebojsa and Vasic-Anicijevic, Dragana and Krstic, Aleksandar and Mitric, Miodrag and Matić, Tamara and Jankovic, Bojan",
year = "2022",
abstract = "Pyrolytic tire (PT) chars were first produced from waste car tires (WCT) through carbonization process at 800 degrees C, for different retention times. Then, best PT-char sample by its physicochemical properties (WCT 800(1 h)) was further tested for its ability to adsorb Rhodamine B (RhB) dye from aqueous solutions. Structural characterization of synthesized material showed existence of graphene-based material, with average pore diameter of 22.8 nm and specific surface area of 55.8 m2.g- 1. Obtained carbon material meets specifications of commercial carbon black (CB). The yield of 33.6% of CB recovered has been achieved. Under the optimal conditions, 99.57% of RhB was removed. Adsorption of RhB obeys pseudo second-order model and Langmuir isotherm model. DFT (the density functional theory) was revealed that effective bonding of RhB onto WCT 800 originates from pi-electron interactions with aromatic moieties and chemical (or at least the electrostatic) interactions, between positive nitrogen and electron-rich surface groups.",
journal = "Diamond and Related Materials",
title = "Simple and effective one-step production of high-quality mesoporous pyrolytic char from waste tires: Rhodamine B adsorption kinetics and density functional theory (DFT) study",
volume = "121",
doi = "10.1016/j.diamond.2021.108768"
}
Pijovic, M., Manic, N., Vasic-Anicijevic, D., Krstic, A., Mitric, M., Matić, T.,& Jankovic, B.. (2022). Simple and effective one-step production of high-quality mesoporous pyrolytic char from waste tires: Rhodamine B adsorption kinetics and density functional theory (DFT) study. in Diamond and Related Materials, 121.
https://doi.org/10.1016/j.diamond.2021.108768
Pijovic M, Manic N, Vasic-Anicijevic D, Krstic A, Mitric M, Matić T, Jankovic B. Simple and effective one-step production of high-quality mesoporous pyrolytic char from waste tires: Rhodamine B adsorption kinetics and density functional theory (DFT) study. in Diamond and Related Materials. 2022;121.
doi:10.1016/j.diamond.2021.108768 .
Pijovic, Milena, Manic, Nebojsa, Vasic-Anicijevic, Dragana, Krstic, Aleksandar, Mitric, Miodrag, Matić, Tamara, Jankovic, Bojan, "Simple and effective one-step production of high-quality mesoporous pyrolytic char from waste tires: Rhodamine B adsorption kinetics and density functional theory (DFT) study" in Diamond and Related Materials, 121 (2022),
https://doi.org/10.1016/j.diamond.2021.108768 . .

DSpace software copyright © 2002-2015  DuraSpace
About TechnoRep | Send Feedback

OpenAIRERCUB
 

 

All of DSpaceInstitutions/communitiesAuthorsTitlesSubjectsThis institutionAuthorsTitlesSubjects

Statistics

View Usage Statistics

DSpace software copyright © 2002-2015  DuraSpace
About TechnoRep | Send Feedback

OpenAIRERCUB