TechnoRep - Faculty of Technology and Metallurgy Repository
University of Belgrade - Faculty of Technology and Metallurgy
    • English
    • Српски
    • Српски (Serbia)
  • English 
    • English
    • Serbian (Cyrillic)
    • Serbian (Latin)
  • Login
View Item 
  •   TechnoRep
  • Tehnološko-metalurški fakultet
  • Radovi istraživača / Researchers’ publications (TMF)
  • View Item
  •   TechnoRep
  • Tehnološko-metalurški fakultet
  • Radovi istraživača / Researchers’ publications (TMF)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Macrophages, the main marker in biocompatibility evaluation of new hydrogels after subcutaneous implantation in rats

Authorized Users Only
2022
Authors
Lužajić-Božinovski, Tijana
Todorovic, Vera
Milosevic, Ivan
Prokić, Bogomir Bolka
Gajdov, Vladimir
Nešović, Katarina
Mišković-Stanković, Vesna
Markovic, Danica
Article (Published version)
Metadata
Show full item record
Abstract
Biocompatibility of materials is one of the most important conditions for their successful application in tissue regeneration and repair. Cell-surface interactions stimulate adhesion and activation of macrophages whose acquaintance can assist in designing novel biomaterials that promote favorable macrophage-biomaterial surface interactions for clinical application. This study is designed to determine the distribution and number of macrophages as a means of biocompatibility evaluation of two newly synthesized materials [silver/poly(vinyl alcohol) (Ag/PVA) and silver/poly(vinyl alcohol)/graphene (Ag/PVA/Gr) nanocomposite hydrogels] in vivo, with approval of the Ethics Committee of the Faculty of Veterinary Medicine, University of Belgrade. Macrophages and giant cells were analyzed in tissue sections stained by routine H&E and immunohistochemical methods (CD68(+)). Statistical relevance was determined in the statistical software package SPSS 20 (IBM corp). The results of the study in term...s of the number of giant cells localized around the implant showed that their number was highest on the seventh postoperative day (p.o.d.) in the group implanted with Ag/PVA hydrogels, and on the 30th p.o.d. in the group implanted with Ag/PVA/Gr. Interestingly, the number of macrophages measured in the capsular and pericapsular space was highest in the group implanted with the commercial Suprasorb

Keywords:
Histology / in vivo / macrophages / rats / silver / poly(vinyl alcohol)graphene / skin
Source:
Journal of Biomaterials Applications, 2022, 36, 6, 1111-1125
Funding / projects:
  • Ministry of Education, Science and Technological Development, Republic of Serbia, Grant no. 200143 (University of Belgrade, Faculty of Veterinary Medicine) (RS-200143)
  • Ministry of Education, Science and Technological Development, Republic of Serbia, Grant no. 200135 (University of Belgrade, Faculty of Technology and Metallurgy) (RS-200135)
  • Ministry of Education, Science and Technological Development, Republic of Serbia, Grant no. 200287 (Innovation Center of the Faculty of Technology and Metallurgy) (RS-200287)

DOI: 10.1177/08853282211046119

ISSN: 0885-3282

PubMed: 34607494

WoS: 000705188900001

Scopus: 2-s2.0-85116417246
[ Google Scholar ]
URI
http://TechnoRep.tmf.bg.ac.rs/handle/123456789/5021
Collections
  • Radovi istraživača / Researchers’ publications (TMF)
Institution/Community
Tehnološko-metalurški fakultet
TY  - JOUR
AU  - Lužajić-Božinovski, Tijana
AU  - Todorovic, Vera
AU  - Milosevic, Ivan
AU  - Prokić, Bogomir Bolka
AU  - Gajdov, Vladimir
AU  - Nešović, Katarina
AU  - Mišković-Stanković, Vesna
AU  - Markovic, Danica
PY  - 2022
UR  - http://TechnoRep.tmf.bg.ac.rs/handle/123456789/5021
AB  - Biocompatibility of materials is one of the most important conditions for their successful application in tissue regeneration and repair. Cell-surface interactions stimulate adhesion and activation of macrophages whose acquaintance can assist in designing novel biomaterials that promote favorable macrophage-biomaterial surface interactions for clinical application. This study is designed to determine the distribution and number of macrophages as a means of biocompatibility evaluation of two newly synthesized materials [silver/poly(vinyl alcohol) (Ag/PVA) and silver/poly(vinyl alcohol)/graphene (Ag/PVA/Gr) nanocomposite hydrogels] in vivo, with approval of the Ethics Committee of the Faculty of Veterinary Medicine, University of Belgrade. Macrophages and giant cells were analyzed in tissue sections stained by routine H&E and immunohistochemical methods (CD68(+)). Statistical relevance was determined in the statistical software package SPSS 20 (IBM corp). The results of the study in terms of the number of giant cells localized around the implant showed that their number was highest on the seventh postoperative day (p.o.d.) in the group implanted with Ag/PVA hydrogels, and on the 30th p.o.d. in the group implanted with Ag/PVA/Gr. Interestingly, the number of macrophages measured in the capsular and pericapsular space was highest in the group implanted with the commercial Suprasorb
T2  - Journal of Biomaterials Applications
T1  - Macrophages, the main marker in biocompatibility evaluation of new hydrogels after subcutaneous implantation in rats
EP  - 1125
IS  - 6
SP  - 1111
VL  - 36
DO  - 10.1177/08853282211046119
ER  - 
@article{
author = "Lužajić-Božinovski, Tijana and Todorovic, Vera and Milosevic, Ivan and Prokić, Bogomir Bolka and Gajdov, Vladimir and Nešović, Katarina and Mišković-Stanković, Vesna and Markovic, Danica",
year = "2022",
abstract = "Biocompatibility of materials is one of the most important conditions for their successful application in tissue regeneration and repair. Cell-surface interactions stimulate adhesion and activation of macrophages whose acquaintance can assist in designing novel biomaterials that promote favorable macrophage-biomaterial surface interactions for clinical application. This study is designed to determine the distribution and number of macrophages as a means of biocompatibility evaluation of two newly synthesized materials [silver/poly(vinyl alcohol) (Ag/PVA) and silver/poly(vinyl alcohol)/graphene (Ag/PVA/Gr) nanocomposite hydrogels] in vivo, with approval of the Ethics Committee of the Faculty of Veterinary Medicine, University of Belgrade. Macrophages and giant cells were analyzed in tissue sections stained by routine H&E and immunohistochemical methods (CD68(+)). Statistical relevance was determined in the statistical software package SPSS 20 (IBM corp). The results of the study in terms of the number of giant cells localized around the implant showed that their number was highest on the seventh postoperative day (p.o.d.) in the group implanted with Ag/PVA hydrogels, and on the 30th p.o.d. in the group implanted with Ag/PVA/Gr. Interestingly, the number of macrophages measured in the capsular and pericapsular space was highest in the group implanted with the commercial Suprasorb",
journal = "Journal of Biomaterials Applications",
title = "Macrophages, the main marker in biocompatibility evaluation of new hydrogels after subcutaneous implantation in rats",
pages = "1125-1111",
number = "6",
volume = "36",
doi = "10.1177/08853282211046119"
}
Lužajić-Božinovski, T., Todorovic, V., Milosevic, I., Prokić, B. B., Gajdov, V., Nešović, K., Mišković-Stanković, V.,& Markovic, D.. (2022). Macrophages, the main marker in biocompatibility evaluation of new hydrogels after subcutaneous implantation in rats. in Journal of Biomaterials Applications, 36(6), 1111-1125.
https://doi.org/10.1177/08853282211046119
Lužajić-Božinovski T, Todorovic V, Milosevic I, Prokić BB, Gajdov V, Nešović K, Mišković-Stanković V, Markovic D. Macrophages, the main marker in biocompatibility evaluation of new hydrogels after subcutaneous implantation in rats. in Journal of Biomaterials Applications. 2022;36(6):1111-1125.
doi:10.1177/08853282211046119 .
Lužajić-Božinovski, Tijana, Todorovic, Vera, Milosevic, Ivan, Prokić, Bogomir Bolka, Gajdov, Vladimir, Nešović, Katarina, Mišković-Stanković, Vesna, Markovic, Danica, "Macrophages, the main marker in biocompatibility evaluation of new hydrogels after subcutaneous implantation in rats" in Journal of Biomaterials Applications, 36, no. 6 (2022):1111-1125,
https://doi.org/10.1177/08853282211046119 . .

DSpace software copyright © 2002-2015  DuraSpace
About TechnoRep | Send Feedback

OpenAIRERCUB
 

 

All of DSpaceInstitutions/communitiesAuthorsTitlesSubjectsThis institutionAuthorsTitlesSubjects

Statistics

View Usage Statistics

DSpace software copyright © 2002-2015  DuraSpace
About TechnoRep | Send Feedback

OpenAIRERCUB