Macrophages, the main marker in biocompatibility evaluation of new hydrogels after subcutaneous implantation in rats
Authorized Users Only
2022
Authors
Lužajić-Božinovski, Tijana
Todorovic, Vera
Milosevic, Ivan
Prokić, Bogomir Bolka

Gajdov, Vladimir
Nešović, Katarina

Mišković-Stanković, Vesna

Markovic, Danica
Article (Published version)

Metadata
Show full item recordAbstract
Biocompatibility of materials is one of the most important conditions for their successful application in tissue regeneration and repair. Cell-surface interactions stimulate adhesion and activation of macrophages whose acquaintance can assist in designing novel biomaterials that promote favorable macrophage-biomaterial surface interactions for clinical application. This study is designed to determine the distribution and number of macrophages as a means of biocompatibility evaluation of two newly synthesized materials [silver/poly(vinyl alcohol) (Ag/PVA) and silver/poly(vinyl alcohol)/graphene (Ag/PVA/Gr) nanocomposite hydrogels] in vivo, with approval of the Ethics Committee of the Faculty of Veterinary Medicine, University of Belgrade. Macrophages and giant cells were analyzed in tissue sections stained by routine H&E and immunohistochemical methods (CD68(+)). Statistical relevance was determined in the statistical software package SPSS 20 (IBM corp). The results of the study in term...s of the number of giant cells localized around the implant showed that their number was highest on the seventh postoperative day (p.o.d.) in the group implanted with Ag/PVA hydrogels, and on the 30th p.o.d. in the group implanted with Ag/PVA/Gr. Interestingly, the number of macrophages measured in the capsular and pericapsular space was highest in the group implanted with the commercial Suprasorb
Keywords:
Histology / in vivo / macrophages / rats / silver / poly(vinyl alcohol)graphene / skinSource:
Journal of Biomaterials Applications, 2022, 36, 6, 1111-1125Funding / projects:
- Ministry of Education, Science and Technological Development, Republic of Serbia, Grant no. 200143 (University of Belgrade, Faculty of Veterinary Medicine) (RS-200143)
- Ministry of Education, Science and Technological Development, Republic of Serbia, Grant no. 200135 (University of Belgrade, Faculty of Technology and Metallurgy) (RS-200135)
- Ministry of Education, Science and Technological Development, Republic of Serbia, Grant no. 200287 (Innovation Center of the Faculty of Technology and Metallurgy) (RS-200287)
DOI: 10.1177/08853282211046119
ISSN: 0885-3282
PubMed: 34607494
WoS: 000705188900001
Scopus: 2-s2.0-85116417246
Institution/Community
Tehnološko-metalurški fakultetTY - JOUR AU - Lužajić-Božinovski, Tijana AU - Todorovic, Vera AU - Milosevic, Ivan AU - Prokić, Bogomir Bolka AU - Gajdov, Vladimir AU - Nešović, Katarina AU - Mišković-Stanković, Vesna AU - Markovic, Danica PY - 2022 UR - http://TechnoRep.tmf.bg.ac.rs/handle/123456789/5021 AB - Biocompatibility of materials is one of the most important conditions for their successful application in tissue regeneration and repair. Cell-surface interactions stimulate adhesion and activation of macrophages whose acquaintance can assist in designing novel biomaterials that promote favorable macrophage-biomaterial surface interactions for clinical application. This study is designed to determine the distribution and number of macrophages as a means of biocompatibility evaluation of two newly synthesized materials [silver/poly(vinyl alcohol) (Ag/PVA) and silver/poly(vinyl alcohol)/graphene (Ag/PVA/Gr) nanocomposite hydrogels] in vivo, with approval of the Ethics Committee of the Faculty of Veterinary Medicine, University of Belgrade. Macrophages and giant cells were analyzed in tissue sections stained by routine H&E and immunohistochemical methods (CD68(+)). Statistical relevance was determined in the statistical software package SPSS 20 (IBM corp). The results of the study in terms of the number of giant cells localized around the implant showed that their number was highest on the seventh postoperative day (p.o.d.) in the group implanted with Ag/PVA hydrogels, and on the 30th p.o.d. in the group implanted with Ag/PVA/Gr. Interestingly, the number of macrophages measured in the capsular and pericapsular space was highest in the group implanted with the commercial Suprasorb T2 - Journal of Biomaterials Applications T1 - Macrophages, the main marker in biocompatibility evaluation of new hydrogels after subcutaneous implantation in rats EP - 1125 IS - 6 SP - 1111 VL - 36 DO - 10.1177/08853282211046119 ER -
@article{ author = "Lužajić-Božinovski, Tijana and Todorovic, Vera and Milosevic, Ivan and Prokić, Bogomir Bolka and Gajdov, Vladimir and Nešović, Katarina and Mišković-Stanković, Vesna and Markovic, Danica", year = "2022", abstract = "Biocompatibility of materials is one of the most important conditions for their successful application in tissue regeneration and repair. Cell-surface interactions stimulate adhesion and activation of macrophages whose acquaintance can assist in designing novel biomaterials that promote favorable macrophage-biomaterial surface interactions for clinical application. This study is designed to determine the distribution and number of macrophages as a means of biocompatibility evaluation of two newly synthesized materials [silver/poly(vinyl alcohol) (Ag/PVA) and silver/poly(vinyl alcohol)/graphene (Ag/PVA/Gr) nanocomposite hydrogels] in vivo, with approval of the Ethics Committee of the Faculty of Veterinary Medicine, University of Belgrade. Macrophages and giant cells were analyzed in tissue sections stained by routine H&E and immunohistochemical methods (CD68(+)). Statistical relevance was determined in the statistical software package SPSS 20 (IBM corp). The results of the study in terms of the number of giant cells localized around the implant showed that their number was highest on the seventh postoperative day (p.o.d.) in the group implanted with Ag/PVA hydrogels, and on the 30th p.o.d. in the group implanted with Ag/PVA/Gr. Interestingly, the number of macrophages measured in the capsular and pericapsular space was highest in the group implanted with the commercial Suprasorb", journal = "Journal of Biomaterials Applications", title = "Macrophages, the main marker in biocompatibility evaluation of new hydrogels after subcutaneous implantation in rats", pages = "1125-1111", number = "6", volume = "36", doi = "10.1177/08853282211046119" }
Lužajić-Božinovski, T., Todorovic, V., Milosevic, I., Prokić, B. B., Gajdov, V., Nešović, K., Mišković-Stanković, V.,& Markovic, D.. (2022). Macrophages, the main marker in biocompatibility evaluation of new hydrogels after subcutaneous implantation in rats. in Journal of Biomaterials Applications, 36(6), 1111-1125. https://doi.org/10.1177/08853282211046119
Lužajić-Božinovski T, Todorovic V, Milosevic I, Prokić BB, Gajdov V, Nešović K, Mišković-Stanković V, Markovic D. Macrophages, the main marker in biocompatibility evaluation of new hydrogels after subcutaneous implantation in rats. in Journal of Biomaterials Applications. 2022;36(6):1111-1125. doi:10.1177/08853282211046119 .
Lužajić-Božinovski, Tijana, Todorovic, Vera, Milosevic, Ivan, Prokić, Bogomir Bolka, Gajdov, Vladimir, Nešović, Katarina, Mišković-Stanković, Vesna, Markovic, Danica, "Macrophages, the main marker in biocompatibility evaluation of new hydrogels after subcutaneous implantation in rats" in Journal of Biomaterials Applications, 36, no. 6 (2022):1111-1125, https://doi.org/10.1177/08853282211046119 . .