TechnoRep - Faculty of Technology and Metallurgy Repository
University of Belgrade - Faculty of Technology and Metallurgy
    • English
    • Српски
    • Српски (Serbia)
  • English 
    • English
    • Serbian (Cyrillic)
    • Serbian (Latin)
  • Login
View Item 
  •   TechnoRep
  • Tehnološko-metalurški fakultet
  • Radovi istraživača / Researchers’ publications (TMF)
  • View Item
  •   TechnoRep
  • Tehnološko-metalurški fakultet
  • Radovi istraživača / Researchers’ publications (TMF)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Polyenes in Medium Chain Length Polyhydroxyalkanoate (mcl-PHA) Biopolymer Microspheres with Reduced Toxicity and Improved Therapeutic Effect against Candida Infection in Zebrafish Model

Thumbnail
2022
Polyenes_in_Medium_pub_2022.pdf (4.343Mb)
Authors
Pavić, Aleksandar
Stojanović, Zoran
Pekmezović, Marina
Veljović, Đorđe
O’connor, Kevin
Malagurski, Ivana
Nikodinović-Runić, Jasmina
Article (Published version)
Metadata
Show full item record
Abstract
Immobilizing antifungal polyenes such as nystatin (Nys) and amphotericin B (AmB) into biodegradable formulations is advantageous compared to free drug administration providing sustained release, reduced dosing due to localized targeting and overall reduced systemic drug toxicity. In this study, we encapsulated Nys and AmB in medium chain length polyhydroxyalkanoates (mcl-PHA) microspheres (7–8 µm in diameter). The obtained formulations have been validated for antifungal activity in vitro against a panel of pathogenic fungi including species of Candida, Aspergillus, Microsporum and Trichophyton genera and toxicity and efficacy in vivo using the zebrafish model of disseminated candidiasis. While free polyenes, especially AmB, were highly toxic to zebrafish embryos at the effective (MIC) doses, after their loading into mcl-PHA microspheres, inner organ toxicity and teratogenicity associated with both drugs were not observed, even at 100 × MIC doses. The obtained mcl-PHA/polyene formulatio...ns have successfully eradicated C. albicans infection and showed an improved therapeutic profile in zebrafish by enhancing infected embryos survival. This approach is contributing to the antifungal arsenal as polyenes, although the first broad-spectrum antifungals on the market are still the gold standard for treatment of fungal infections.

Keywords:
Candida albicans / formulation / microsphere / PHA / polyene / polyhydroxyalkanoate / zebrafish
Source:
Pharmaceutics, 2022, 14, 4, 696-
Publisher:
  • MDPI
Funding / projects:
  • Ministry of Education, Science and Technological Development, Republic of Serbia, Grant no. 200042 (University of Belgrade, Institute of Molecular Genetics and Genetic Engineering) (RS-200042)
  • Ministry of Education, Science and Technological Development, Republic of Serbia, Grant no. 200175 (Institute of Technical Sciences of SASA, Belgrade) (RS-200175)

DOI: 10.3390/pharmaceutics14040696

ISSN: 1999-4923

WoS: 00078680830000

Scopus: 2-s2.0-85127808436
[ Google Scholar ]
1
URI
http://TechnoRep.tmf.bg.ac.rs/handle/123456789/5104
Collections
  • Radovi istraživača / Researchers’ publications (TMF)
Institution/Community
Tehnološko-metalurški fakultet
TY  - JOUR
AU  - Pavić, Aleksandar
AU  - Stojanović, Zoran
AU  - Pekmezović, Marina
AU  - Veljović, Đorđe
AU  - O’connor, Kevin
AU  - Malagurski, Ivana
AU  - Nikodinović-Runić, Jasmina
PY  - 2022
UR  - http://TechnoRep.tmf.bg.ac.rs/handle/123456789/5104
AB  - Immobilizing antifungal polyenes such as nystatin (Nys) and amphotericin B (AmB) into biodegradable formulations is advantageous compared to free drug administration providing sustained release, reduced dosing due to localized targeting and overall reduced systemic drug toxicity. In this study, we encapsulated Nys and AmB in medium chain length polyhydroxyalkanoates (mcl-PHA) microspheres (7–8 µm in diameter). The obtained formulations have been validated for antifungal activity in vitro against a panel of pathogenic fungi including species of Candida, Aspergillus, Microsporum and Trichophyton genera and toxicity and efficacy in vivo using the zebrafish model of disseminated candidiasis. While free polyenes, especially AmB, were highly toxic to zebrafish embryos at the effective (MIC) doses, after their loading into mcl-PHA microspheres, inner organ toxicity and teratogenicity associated with both drugs were not observed, even at 100 × MIC doses. The obtained mcl-PHA/polyene formulations have successfully eradicated C. albicans infection and showed an improved therapeutic profile in zebrafish by enhancing infected embryos survival. This approach is contributing to the antifungal arsenal as polyenes, although the first broad-spectrum antifungals on the market are still the gold standard for treatment of fungal infections.
PB  - MDPI
T2  - Pharmaceutics
T1  - Polyenes in Medium Chain Length Polyhydroxyalkanoate (mcl-PHA) Biopolymer Microspheres with Reduced Toxicity and Improved Therapeutic Effect against Candida Infection in Zebrafish Model
IS  - 4
SP  - 696
VL  - 14
DO  - 10.3390/pharmaceutics14040696
ER  - 
@article{
author = "Pavić, Aleksandar and Stojanović, Zoran and Pekmezović, Marina and Veljović, Đorđe and O’connor, Kevin and Malagurski, Ivana and Nikodinović-Runić, Jasmina",
year = "2022",
abstract = "Immobilizing antifungal polyenes such as nystatin (Nys) and amphotericin B (AmB) into biodegradable formulations is advantageous compared to free drug administration providing sustained release, reduced dosing due to localized targeting and overall reduced systemic drug toxicity. In this study, we encapsulated Nys and AmB in medium chain length polyhydroxyalkanoates (mcl-PHA) microspheres (7–8 µm in diameter). The obtained formulations have been validated for antifungal activity in vitro against a panel of pathogenic fungi including species of Candida, Aspergillus, Microsporum and Trichophyton genera and toxicity and efficacy in vivo using the zebrafish model of disseminated candidiasis. While free polyenes, especially AmB, were highly toxic to zebrafish embryos at the effective (MIC) doses, after their loading into mcl-PHA microspheres, inner organ toxicity and teratogenicity associated with both drugs were not observed, even at 100 × MIC doses. The obtained mcl-PHA/polyene formulations have successfully eradicated C. albicans infection and showed an improved therapeutic profile in zebrafish by enhancing infected embryos survival. This approach is contributing to the antifungal arsenal as polyenes, although the first broad-spectrum antifungals on the market are still the gold standard for treatment of fungal infections.",
publisher = "MDPI",
journal = "Pharmaceutics",
title = "Polyenes in Medium Chain Length Polyhydroxyalkanoate (mcl-PHA) Biopolymer Microspheres with Reduced Toxicity and Improved Therapeutic Effect against Candida Infection in Zebrafish Model",
number = "4",
pages = "696",
volume = "14",
doi = "10.3390/pharmaceutics14040696"
}
Pavić, A., Stojanović, Z., Pekmezović, M., Veljović, Đ., O’connor, K., Malagurski, I.,& Nikodinović-Runić, J.. (2022). Polyenes in Medium Chain Length Polyhydroxyalkanoate (mcl-PHA) Biopolymer Microspheres with Reduced Toxicity and Improved Therapeutic Effect against Candida Infection in Zebrafish Model. in Pharmaceutics
MDPI., 14(4), 696.
https://doi.org/10.3390/pharmaceutics14040696
Pavić A, Stojanović Z, Pekmezović M, Veljović Đ, O’connor K, Malagurski I, Nikodinović-Runić J. Polyenes in Medium Chain Length Polyhydroxyalkanoate (mcl-PHA) Biopolymer Microspheres with Reduced Toxicity and Improved Therapeutic Effect against Candida Infection in Zebrafish Model. in Pharmaceutics. 2022;14(4):696.
doi:10.3390/pharmaceutics14040696 .
Pavić, Aleksandar, Stojanović, Zoran, Pekmezović, Marina, Veljović, Đorđe, O’connor, Kevin, Malagurski, Ivana, Nikodinović-Runić, Jasmina, "Polyenes in Medium Chain Length Polyhydroxyalkanoate (mcl-PHA) Biopolymer Microspheres with Reduced Toxicity and Improved Therapeutic Effect against Candida Infection in Zebrafish Model" in Pharmaceutics, 14, no. 4 (2022):696,
https://doi.org/10.3390/pharmaceutics14040696 . .

DSpace software copyright © 2002-2015  DuraSpace
About TechnoRep | Send Feedback

OpenAIRERCUB
 

 

All of DSpaceInstitutions/communitiesAuthorsTitlesSubjectsThis institutionAuthorsTitlesSubjects

Statistics

View Usage Statistics

DSpace software copyright © 2002-2015  DuraSpace
About TechnoRep | Send Feedback

OpenAIRERCUB