TechnoRep - Faculty of Technology and Metallurgy Repository
University of Belgrade - Faculty of Technology and Metallurgy
    • English
    • Српски
    • Српски (Serbia)
  • English 
    • English
    • Serbian (Cyrillic)
    • Serbian (Latin)
  • Login
View Item 
  •   TechnoRep
  • Inovacioni centar
  • Radovi istraživača (Inovacioni centar) / Researchers’ publications (Innovation Centre)
  • View Item
  •   TechnoRep
  • Inovacioni centar
  • Radovi istraživača (Inovacioni centar) / Researchers’ publications (Innovation Centre)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Antibacterial Bio-Nanocomposite Textile Material Produced from Natural Resources

Thumbnail
2022
Antibacterial_Bio-Nanocomposite_pub_2022.pdf (5.691Mb)
Authors
Marković, Darka
Zille, Andrea
Ribeiro, Ana Isabel
Mikučioniene, Daiva
Simončič, Barbara
Tomšič, Brigita
Radetić, Maja
Article (Published version)
Metadata
Show full item record
Abstract
Growing demand for sustainable and green technologies has turned industries and research toward the more efficient utilization of natural and renewable resources. In an effort to tackle this issue, we developed an antibacterial textile nanocomposite material based on cotton and peat fibers with immobilized Cu-based nanostructures. In order to overcome poor wettability and affinity for Cu2+-ions, the substrate was activated by corona discharge and coated with the biopolymer chitosan before the in situ synthesis of nanostructures. Field emission scanning electron microscopy (FESEM) images show that the application of gallic or ascorbic acid as green reducing agents resulted in the formation of Cu-based nanosheets and mostly spherical nanoparticles, respectively. X-ray photoelectron spectroscopy (XPS) analysis revealed that the formed nanostructures consisted of Cu2O and CuO. A higher-concentration precursor solution led to higher copper content in the nanocomposites, independent of the r...educing agent and chitosan deacetylation degree. Most of the synthesized nanocomposites provided maximum reduction of the bacteria Escherichia coli and Staphylococcus aureus. A combined modification using chitosan with a higher deacetylation degree, a 1 mM solution of CuSO4 solution, and gallic acid resulted in an optimal textile nanocomposite with strong antibacterial activity and moderate Cu2+-ion release in physiological solutions. Finally, the Cu-based nanostructures partially suppressed the biodegradation of the textile nanocomposite in soil.

Keywords:
chitosan / copper oxide nanostructures / corona / cotton / peat
Source:
Nanomaterials, 2022, 12, 15, 2539-
Publisher:
  • MDPI
Funding / projects:
  • Open access funding was provided by COST Action “European Network to connect research and innovation efforts on advanced Smart Textiles” (CONTEXT, Ref. CA17107, https: //www.context-cost.eu (accessed on 1 July 2020)).
  • Ministry of Education, Science and Technological Development, Republic of Serbia, Grant no. 200135 (University of Belgrade, Faculty of Technology and Metallurgy) (RS-200135)
  • Ministry of Education, Science and Technological Development, Republic of Serbia, Grant no. 200287 (Innovation Center of the Faculty of Technology and Metallurgy) (RS-200287)
  • The Slovenian Research Agency (Program P2-0213 Textiles and Ecology).

DOI: 10.3390/nano12152539

ISSN: 2079-4991

WoS: 00083984390000

Scopus: 2-s2.0-85136995084
[ Google Scholar ]
URI
http://TechnoRep.tmf.bg.ac.rs/handle/123456789/5305
Collections
  • Radovi istraživača (Inovacioni centar) / Researchers’ publications (Innovation Centre)
  • Radovi istraživača / Researchers’ publications (TMF)
Institution/Community
Inovacioni centar
TY  - JOUR
AU  - Marković, Darka
AU  - Zille, Andrea
AU  - Ribeiro, Ana Isabel
AU  - Mikučioniene, Daiva
AU  - Simončič, Barbara
AU  - Tomšič, Brigita
AU  - Radetić, Maja
PY  - 2022
UR  - http://TechnoRep.tmf.bg.ac.rs/handle/123456789/5305
AB  - Growing demand for sustainable and green technologies has turned industries and research toward the more efficient utilization of natural and renewable resources. In an effort to tackle this issue, we developed an antibacterial textile nanocomposite material based on cotton and peat fibers with immobilized Cu-based nanostructures. In order to overcome poor wettability and affinity for Cu2+-ions, the substrate was activated by corona discharge and coated with the biopolymer chitosan before the in situ synthesis of nanostructures. Field emission scanning electron microscopy (FESEM) images show that the application of gallic or ascorbic acid as green reducing agents resulted in the formation of Cu-based nanosheets and mostly spherical nanoparticles, respectively. X-ray photoelectron spectroscopy (XPS) analysis revealed that the formed nanostructures consisted of Cu2O and CuO. A higher-concentration precursor solution led to higher copper content in the nanocomposites, independent of the reducing agent and chitosan deacetylation degree. Most of the synthesized nanocomposites provided maximum reduction of the bacteria Escherichia coli and Staphylococcus aureus. A combined modification using chitosan with a higher deacetylation degree, a 1 mM solution of CuSO4 solution, and gallic acid resulted in an optimal textile nanocomposite with strong antibacterial activity and moderate Cu2+-ion release in physiological solutions. Finally, the Cu-based nanostructures partially suppressed the biodegradation of the textile nanocomposite in soil.
PB  - MDPI
T2  - Nanomaterials
T1  - Antibacterial Bio-Nanocomposite Textile Material Produced from Natural Resources
IS  - 15
SP  - 2539
VL  - 12
DO  - 10.3390/nano12152539
ER  - 
@article{
author = "Marković, Darka and Zille, Andrea and Ribeiro, Ana Isabel and Mikučioniene, Daiva and Simončič, Barbara and Tomšič, Brigita and Radetić, Maja",
year = "2022",
abstract = "Growing demand for sustainable and green technologies has turned industries and research toward the more efficient utilization of natural and renewable resources. In an effort to tackle this issue, we developed an antibacterial textile nanocomposite material based on cotton and peat fibers with immobilized Cu-based nanostructures. In order to overcome poor wettability and affinity for Cu2+-ions, the substrate was activated by corona discharge and coated with the biopolymer chitosan before the in situ synthesis of nanostructures. Field emission scanning electron microscopy (FESEM) images show that the application of gallic or ascorbic acid as green reducing agents resulted in the formation of Cu-based nanosheets and mostly spherical nanoparticles, respectively. X-ray photoelectron spectroscopy (XPS) analysis revealed that the formed nanostructures consisted of Cu2O and CuO. A higher-concentration precursor solution led to higher copper content in the nanocomposites, independent of the reducing agent and chitosan deacetylation degree. Most of the synthesized nanocomposites provided maximum reduction of the bacteria Escherichia coli and Staphylococcus aureus. A combined modification using chitosan with a higher deacetylation degree, a 1 mM solution of CuSO4 solution, and gallic acid resulted in an optimal textile nanocomposite with strong antibacterial activity and moderate Cu2+-ion release in physiological solutions. Finally, the Cu-based nanostructures partially suppressed the biodegradation of the textile nanocomposite in soil.",
publisher = "MDPI",
journal = "Nanomaterials",
title = "Antibacterial Bio-Nanocomposite Textile Material Produced from Natural Resources",
number = "15",
pages = "2539",
volume = "12",
doi = "10.3390/nano12152539"
}
Marković, D., Zille, A., Ribeiro, A. I., Mikučioniene, D., Simončič, B., Tomšič, B.,& Radetić, M.. (2022). Antibacterial Bio-Nanocomposite Textile Material Produced from Natural Resources. in Nanomaterials
MDPI., 12(15), 2539.
https://doi.org/10.3390/nano12152539
Marković D, Zille A, Ribeiro AI, Mikučioniene D, Simončič B, Tomšič B, Radetić M. Antibacterial Bio-Nanocomposite Textile Material Produced from Natural Resources. in Nanomaterials. 2022;12(15):2539.
doi:10.3390/nano12152539 .
Marković, Darka, Zille, Andrea, Ribeiro, Ana Isabel, Mikučioniene, Daiva, Simončič, Barbara, Tomšič, Brigita, Radetić, Maja, "Antibacterial Bio-Nanocomposite Textile Material Produced from Natural Resources" in Nanomaterials, 12, no. 15 (2022):2539,
https://doi.org/10.3390/nano12152539 . .

DSpace software copyright © 2002-2015  DuraSpace
About TechnoRep | Send Feedback

OpenAIRERCUB
 

 

All of DSpaceInstitutions/communitiesAuthorsTitlesSubjectsThis institutionAuthorsTitlesSubjects

Statistics

View Usage Statistics

DSpace software copyright © 2002-2015  DuraSpace
About TechnoRep | Send Feedback

OpenAIRERCUB