TechnoRep - Faculty of Technology and Metallurgy Repository
University of Belgrade - Faculty of Technology and Metallurgy
    • English
    • Српски
    • Српски (Serbia)
  • English 
    • English
    • Serbian (Cyrillic)
    • Serbian (Latin)
  • Login
View Item 
  •   TechnoRep
  • Tehnološko-metalurški fakultet
  • Radovi istraživača / Researchers’ publications (TMF)
  • View Item
  •   TechnoRep
  • Tehnološko-metalurški fakultet
  • Radovi istraživača / Researchers’ publications (TMF)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Cleavage Fracture of the Air Cooled Medium Carbon Microalloyed Forging Steels with Heterogeneous Microstructures

Thumbnail
2022
Cleavage_Fracture_pub_2022.pdf (4.809Mb)
Authors
Jovanović, Gvozden
Glišić, Dragomir
Dikić, Stefan
Radović, Nenad
Patarić, Aleksandra
Article (Published version)
Metadata
Show full item record
Abstract
Cleavage fracture of the V and Ti-V microalloyed forging steels was investigated by the four-point bending testing of the notched specimens of Griffith-Owen’s type at −196◦ C, in conjunction with the finite element analysis and the fractographic examination by scanning electron microscopy. To assess the mixed microstructure consisting mostly of the acicular ferrite, alongside proeutectoid ferrite grains and pearlite, the samples were held at 1250◦ C for 30 min and subsequently cooled instill air. Cleavage fracture was initiated in the matrix under the high plastic strains near the notch root of the four-point bending specimens without the participation of the second phase particles in the process. Estimated values of the effective surface energy for the V and the Ti-V microalloyed steel of 37 Jm−2 and 74 Jm−2, respectively, and the related increase of local critical fracture stress were attributed to the increased content of the acicular ferrite. It was concluded that the observed incr...ease of the local stress for cleavage crack propagation through the matrix was due to the increased number of the high angle boundaries, but also that the acicular ferrite affects the cleavage fracture mechanism by its characteristic stress–strain response with relatively low yield strength and considerable ductility at −196◦ C.

Keywords:
Acicular ferrite / Cleavage fracture stress / Heterogeneous microstructure / Medium carbon forging steel / Microalloyed steel
Source:
Materials, 2022, 15, 5, 1760-
Publisher:
  • MDPI
Funding / projects:
  • Ministry of Education, Science and Technological Development, Republic of Serbia, Grant no. 200135 (University of Belgrade, Faculty of Technology and Metallurgy) (RS-200135)

DOI: 10.3390/ma15051760

ISSN: 1996-1944

WoS: 000769223400001

Scopus: 2-s2.0-85125193185
[ Google Scholar ]
1
URI
http://TechnoRep.tmf.bg.ac.rs/handle/123456789/5310
Collections
  • Radovi istraživača / Researchers’ publications (TMF)
Institution/Community
Tehnološko-metalurški fakultet
TY  - JOUR
AU  - Jovanović, Gvozden
AU  - Glišić, Dragomir
AU  - Dikić, Stefan
AU  - Radović, Nenad
AU  - Patarić, Aleksandra
PY  - 2022
UR  - http://TechnoRep.tmf.bg.ac.rs/handle/123456789/5310
AB  - Cleavage fracture of the V and Ti-V microalloyed forging steels was investigated by the four-point bending testing of the notched specimens of Griffith-Owen’s type at −196◦ C, in conjunction with the finite element analysis and the fractographic examination by scanning electron microscopy. To assess the mixed microstructure consisting mostly of the acicular ferrite, alongside proeutectoid ferrite grains and pearlite, the samples were held at 1250◦ C for 30 min and subsequently cooled instill air. Cleavage fracture was initiated in the matrix under the high plastic strains near the notch root of the four-point bending specimens without the participation of the second phase particles in the process. Estimated values of the effective surface energy for the V and the Ti-V microalloyed steel of 37 Jm−2 and 74 Jm−2, respectively, and the related increase of local critical fracture stress were attributed to the increased content of the acicular ferrite. It was concluded that the observed increase of the local stress for cleavage crack propagation through the matrix was due to the increased number of the high angle boundaries, but also that the acicular ferrite affects the cleavage fracture mechanism by its characteristic stress–strain response with relatively low yield strength and considerable ductility at −196◦ C.
PB  - MDPI
T2  - Materials
T1  - Cleavage Fracture of the Air Cooled Medium Carbon Microalloyed Forging Steels with Heterogeneous Microstructures
IS  - 5
SP  - 1760
VL  - 15
DO  - 10.3390/ma15051760
ER  - 
@article{
author = "Jovanović, Gvozden and Glišić, Dragomir and Dikić, Stefan and Radović, Nenad and Patarić, Aleksandra",
year = "2022",
abstract = "Cleavage fracture of the V and Ti-V microalloyed forging steels was investigated by the four-point bending testing of the notched specimens of Griffith-Owen’s type at −196◦ C, in conjunction with the finite element analysis and the fractographic examination by scanning electron microscopy. To assess the mixed microstructure consisting mostly of the acicular ferrite, alongside proeutectoid ferrite grains and pearlite, the samples were held at 1250◦ C for 30 min and subsequently cooled instill air. Cleavage fracture was initiated in the matrix under the high plastic strains near the notch root of the four-point bending specimens without the participation of the second phase particles in the process. Estimated values of the effective surface energy for the V and the Ti-V microalloyed steel of 37 Jm−2 and 74 Jm−2, respectively, and the related increase of local critical fracture stress were attributed to the increased content of the acicular ferrite. It was concluded that the observed increase of the local stress for cleavage crack propagation through the matrix was due to the increased number of the high angle boundaries, but also that the acicular ferrite affects the cleavage fracture mechanism by its characteristic stress–strain response with relatively low yield strength and considerable ductility at −196◦ C.",
publisher = "MDPI",
journal = "Materials",
title = "Cleavage Fracture of the Air Cooled Medium Carbon Microalloyed Forging Steels with Heterogeneous Microstructures",
number = "5",
pages = "1760",
volume = "15",
doi = "10.3390/ma15051760"
}
Jovanović, G., Glišić, D., Dikić, S., Radović, N.,& Patarić, A.. (2022). Cleavage Fracture of the Air Cooled Medium Carbon Microalloyed Forging Steels with Heterogeneous Microstructures. in Materials
MDPI., 15(5), 1760.
https://doi.org/10.3390/ma15051760
Jovanović G, Glišić D, Dikić S, Radović N, Patarić A. Cleavage Fracture of the Air Cooled Medium Carbon Microalloyed Forging Steels with Heterogeneous Microstructures. in Materials. 2022;15(5):1760.
doi:10.3390/ma15051760 .
Jovanović, Gvozden, Glišić, Dragomir, Dikić, Stefan, Radović, Nenad, Patarić, Aleksandra, "Cleavage Fracture of the Air Cooled Medium Carbon Microalloyed Forging Steels with Heterogeneous Microstructures" in Materials, 15, no. 5 (2022):1760,
https://doi.org/10.3390/ma15051760 . .

DSpace software copyright © 2002-2015  DuraSpace
About TechnoRep | Send Feedback

OpenAIRERCUB
 

 

All of DSpaceInstitutions/communitiesAuthorsTitlesSubjectsThis institutionAuthorsTitlesSubjects

Statistics

View Usage Statistics

DSpace software copyright © 2002-2015  DuraSpace
About TechnoRep | Send Feedback

OpenAIRERCUB