TechnoRep - Faculty of Technology and Metallurgy Repository
University of Belgrade - Faculty of Technology and Metallurgy
    • English
    • Српски
    • Српски (Serbia)
  • English 
    • English
    • Serbian (Cyrillic)
    • Serbian (Latin)
  • Login
View Item 
  •   TechnoRep
  • Inovacioni centar
  • Radovi istraživača (Inovacioni centar) / Researchers’ publications (Innovation Centre)
  • View Item
  •   TechnoRep
  • Inovacioni centar
  • Radovi istraživača (Inovacioni centar) / Researchers’ publications (Innovation Centre)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Ultrasonication for production of nanoliposomes with encapsulated soy protein concentrate hydrolysate: Process optimization, vesicle characteristics and in vitro digestion

Thumbnail
2022
Ultrasonication_for_production_pub_2022.pdf (4.572Mb)
Authors
Pavlović, Neda
Mijalković, Jelena
Đorđević, Verica
Pecarski, Danijela
Bugarski, Branko
Knežević-Jugović, Zorica
Article (Published version)
Metadata
Show full item record
Abstract
This study presents the state-of-art research about the assembly of soy proteins in nanocarriers, liposomes, and its design includes different physicochemical strategies and approaches: two-step enzymatic hydrolysis of soy concentrate, hydrolysate encapsulation by using phospholipids and cholesterol, and application of ultrasonication. Achieved results revealed that ultrasonication, together with cholesterol addition into phospholipid layers, improved the stability of nanoliposomes, and a maximum EE value of 60.5 % was obtained. Average size of peptide-loaded nanoliposomes was found to be from 191.1 to 286.7 nm, with a ζ potential of −25.5 to −34.6 mV, and a polydispersity index of 0.250–0.390. Ultrasound-assisted encapsulation process did not lead to a decrease in the antioxidant activity of the trapped peptides. FTIR has indicated an effective hydrophobic interaction between phosphatidylcholine and hydrolysate peptides. TEM and SEM have confirmed the spherical nanocarrier structure a...nd unilamelarity. Prolonged gastrointestinal release and stability of peptides have been enabled by liposome nanocarriers.

Keywords:
Antioxidant activity / Enzymatic hydrolysis / Hydrolysate encapsulation / In vitro digestion / Liposome-peptides carriers / Soy protein concentrate / Structural characterization
Source:
Food Chemistry: X, 2022, 15, 100370-
Publisher:
  • Elsevier Ltd
Funding / projects:
  • Ministry of Education, Science and Technological Development, Republic of Serbia, Grant no. 200287 (Innovation Center of the Faculty of Technology and Metallurgy) (RS-200287)
  • Ministry of Education, Science and Technological Development, Republic of Serbia, Grant no. 200135 (University of Belgrade, Faculty of Technology and Metallurgy) (RS-200135)

DOI: 10.1016/j.fochx.2022.100370

ISSN: 2590-1575

WoS: 00082105040000

Scopus: 2-s2.0-85132800371
[ Google Scholar ]
3
URI
http://TechnoRep.tmf.bg.ac.rs/handle/123456789/5384
Collections
  • Radovi istraživača (Inovacioni centar) / Researchers’ publications (Innovation Centre)
  • Radovi istraživača / Researchers’ publications (TMF)
Institution/Community
Inovacioni centar
TY  - JOUR
AU  - Pavlović, Neda
AU  - Mijalković, Jelena
AU  - Đorđević, Verica
AU  - Pecarski, Danijela
AU  - Bugarski, Branko
AU  - Knežević-Jugović, Zorica
PY  - 2022
UR  - http://TechnoRep.tmf.bg.ac.rs/handle/123456789/5384
AB  - This study presents the state-of-art research about the assembly of soy proteins in nanocarriers, liposomes, and its design includes different physicochemical strategies and approaches: two-step enzymatic hydrolysis of soy concentrate, hydrolysate encapsulation by using phospholipids and cholesterol, and application of ultrasonication. Achieved results revealed that ultrasonication, together with cholesterol addition into phospholipid layers, improved the stability of nanoliposomes, and a maximum EE value of 60.5 % was obtained. Average size of peptide-loaded nanoliposomes was found to be from 191.1 to 286.7 nm, with a ζ potential of −25.5 to −34.6 mV, and a polydispersity index of 0.250–0.390. Ultrasound-assisted encapsulation process did not lead to a decrease in the antioxidant activity of the trapped peptides. FTIR has indicated an effective hydrophobic interaction between phosphatidylcholine and hydrolysate peptides. TEM and SEM have confirmed the spherical nanocarrier structure and unilamelarity. Prolonged gastrointestinal release and stability of peptides have been enabled by liposome nanocarriers.
PB  - Elsevier Ltd
T2  - Food Chemistry: X
T1  - Ultrasonication for production of nanoliposomes with encapsulated soy protein concentrate hydrolysate: Process optimization, vesicle characteristics and in vitro digestion
SP  - 100370
VL  - 15
DO  - 10.1016/j.fochx.2022.100370
ER  - 
@article{
author = "Pavlović, Neda and Mijalković, Jelena and Đorđević, Verica and Pecarski, Danijela and Bugarski, Branko and Knežević-Jugović, Zorica",
year = "2022",
abstract = "This study presents the state-of-art research about the assembly of soy proteins in nanocarriers, liposomes, and its design includes different physicochemical strategies and approaches: two-step enzymatic hydrolysis of soy concentrate, hydrolysate encapsulation by using phospholipids and cholesterol, and application of ultrasonication. Achieved results revealed that ultrasonication, together with cholesterol addition into phospholipid layers, improved the stability of nanoliposomes, and a maximum EE value of 60.5 % was obtained. Average size of peptide-loaded nanoliposomes was found to be from 191.1 to 286.7 nm, with a ζ potential of −25.5 to −34.6 mV, and a polydispersity index of 0.250–0.390. Ultrasound-assisted encapsulation process did not lead to a decrease in the antioxidant activity of the trapped peptides. FTIR has indicated an effective hydrophobic interaction between phosphatidylcholine and hydrolysate peptides. TEM and SEM have confirmed the spherical nanocarrier structure and unilamelarity. Prolonged gastrointestinal release and stability of peptides have been enabled by liposome nanocarriers.",
publisher = "Elsevier Ltd",
journal = "Food Chemistry: X",
title = "Ultrasonication for production of nanoliposomes with encapsulated soy protein concentrate hydrolysate: Process optimization, vesicle characteristics and in vitro digestion",
pages = "100370",
volume = "15",
doi = "10.1016/j.fochx.2022.100370"
}
Pavlović, N., Mijalković, J., Đorđević, V., Pecarski, D., Bugarski, B.,& Knežević-Jugović, Z.. (2022). Ultrasonication for production of nanoliposomes with encapsulated soy protein concentrate hydrolysate: Process optimization, vesicle characteristics and in vitro digestion. in Food Chemistry: X
Elsevier Ltd., 15, 100370.
https://doi.org/10.1016/j.fochx.2022.100370
Pavlović N, Mijalković J, Đorđević V, Pecarski D, Bugarski B, Knežević-Jugović Z. Ultrasonication for production of nanoliposomes with encapsulated soy protein concentrate hydrolysate: Process optimization, vesicle characteristics and in vitro digestion. in Food Chemistry: X. 2022;15:100370.
doi:10.1016/j.fochx.2022.100370 .
Pavlović, Neda, Mijalković, Jelena, Đorđević, Verica, Pecarski, Danijela, Bugarski, Branko, Knežević-Jugović, Zorica, "Ultrasonication for production of nanoliposomes with encapsulated soy protein concentrate hydrolysate: Process optimization, vesicle characteristics and in vitro digestion" in Food Chemistry: X, 15 (2022):100370,
https://doi.org/10.1016/j.fochx.2022.100370 . .

DSpace software copyright © 2002-2015  DuraSpace
About TechnoRep | Send Feedback

OpenAIRERCUB
 

 

All of DSpaceInstitutions/communitiesAuthorsTitlesSubjectsThis institutionAuthorsTitlesSubjects

Statistics

View Usage Statistics

DSpace software copyright © 2002-2015  DuraSpace
About TechnoRep | Send Feedback

OpenAIRERCUB