A novel platinum-based nanocatalyst at a niobia-doped titania support for the hydrogen oxidation reaction
Authors
Elezovic, Nevenka R.Babić, Biljana M.
Radmilovic, Velimir
Gajic-Krstajic, Ljiljana M.
Krstajic, Nedeljko V.
Vracar, Ljiljana M.
Article
Metadata
Show full item recordAbstract
The kinetics of the hydrogen oxidation reaction (HOR) was studied at Pt nanoparticles supported on niobia-doped titania (Pt/N-T). The catalyst support, with the composition of 0.05NbO(2.5-delta)-0.995TiO(2) (0 LT delta LT 1), was synthesized by a modified sol gel procedure and characterized by the BET and X-ray diffraction (XRD) techniques. The specific surface area of the support was found to be 70 m(2) g(-1). The XRD analysis revealed the presence of the anatase TiO(2) phase in the support powder. No peaks indicating the existence of Nb-compounds were detected. Pt/N-T nanocatalyst was synthesized by the borohydride reduction method. Transmission electron microscopy revealed a quite homogenous distribution of the Pt nanoparticles over the support, with a mean particle size of about 3 nm. The electrochemical active surface area of Pt of 42 +/- 14 m(2) g(-1) was determined by the cyclic voltammetry technique. The kinetics of the HOR was investigated by linear sweep voltammetry at a rota...ting disc electrode in 0.5 mol dm(-3) HClO(4) solution. The determined value of the Tafel slope of 35 mV dec(-1) and an exchange current density of 0.45 mA cm(-2) per real surface area of the Pt are in good accordance with those already reported in the literature for the HOR at polycrystalline Pt and Pt nanocatalysts in acid solutions. This new catalyst exhibited better activity for the HOR in comparison with Pt nanocatalyst supported on Vulcan (R) XC-72R high area carbon.
Keywords:
niobia-doped titania support / Pt nanocatalyst / hydrogen oxidation reaction / fuel cellSource:
Journal of the Serbian Chemical Society, 2011, 76, 8, 1139-1152Funding / projects:
- Development, characterization and application nanostructured and composite electrocatalysts and interactive supports for fuel cells and water electrolysis (RS-172054)
- United States Department of Energy [DE-AC02-05CH11231]
DOI: 10.2298/JSC100823100E
ISSN: 0352-5139
WoS: 000294746200008
Scopus: 2-s2.0-80051917513
Institution/Community
Tehnološko-metalurški fakultetTY - JOUR AU - Elezovic, Nevenka R. AU - Babić, Biljana M. AU - Radmilovic, Velimir AU - Gajic-Krstajic, Ljiljana M. AU - Krstajic, Nedeljko V. AU - Vracar, Ljiljana M. PY - 2011 UR - http://TechnoRep.tmf.bg.ac.rs/handle/123456789/5627 AB - The kinetics of the hydrogen oxidation reaction (HOR) was studied at Pt nanoparticles supported on niobia-doped titania (Pt/N-T). The catalyst support, with the composition of 0.05NbO(2.5-delta)-0.995TiO(2) (0 LT delta LT 1), was synthesized by a modified sol gel procedure and characterized by the BET and X-ray diffraction (XRD) techniques. The specific surface area of the support was found to be 70 m(2) g(-1). The XRD analysis revealed the presence of the anatase TiO(2) phase in the support powder. No peaks indicating the existence of Nb-compounds were detected. Pt/N-T nanocatalyst was synthesized by the borohydride reduction method. Transmission electron microscopy revealed a quite homogenous distribution of the Pt nanoparticles over the support, with a mean particle size of about 3 nm. The electrochemical active surface area of Pt of 42 +/- 14 m(2) g(-1) was determined by the cyclic voltammetry technique. The kinetics of the HOR was investigated by linear sweep voltammetry at a rotating disc electrode in 0.5 mol dm(-3) HClO(4) solution. The determined value of the Tafel slope of 35 mV dec(-1) and an exchange current density of 0.45 mA cm(-2) per real surface area of the Pt are in good accordance with those already reported in the literature for the HOR at polycrystalline Pt and Pt nanocatalysts in acid solutions. This new catalyst exhibited better activity for the HOR in comparison with Pt nanocatalyst supported on Vulcan (R) XC-72R high area carbon. T2 - Journal of the Serbian Chemical Society T1 - A novel platinum-based nanocatalyst at a niobia-doped titania support for the hydrogen oxidation reaction EP - 1152 IS - 8 SP - 1139 VL - 76 DO - 10.2298/JSC100823100E ER -
@article{ author = "Elezovic, Nevenka R. and Babić, Biljana M. and Radmilovic, Velimir and Gajic-Krstajic, Ljiljana M. and Krstajic, Nedeljko V. and Vracar, Ljiljana M.", year = "2011", abstract = "The kinetics of the hydrogen oxidation reaction (HOR) was studied at Pt nanoparticles supported on niobia-doped titania (Pt/N-T). The catalyst support, with the composition of 0.05NbO(2.5-delta)-0.995TiO(2) (0 LT delta LT 1), was synthesized by a modified sol gel procedure and characterized by the BET and X-ray diffraction (XRD) techniques. The specific surface area of the support was found to be 70 m(2) g(-1). The XRD analysis revealed the presence of the anatase TiO(2) phase in the support powder. No peaks indicating the existence of Nb-compounds were detected. Pt/N-T nanocatalyst was synthesized by the borohydride reduction method. Transmission electron microscopy revealed a quite homogenous distribution of the Pt nanoparticles over the support, with a mean particle size of about 3 nm. The electrochemical active surface area of Pt of 42 +/- 14 m(2) g(-1) was determined by the cyclic voltammetry technique. The kinetics of the HOR was investigated by linear sweep voltammetry at a rotating disc electrode in 0.5 mol dm(-3) HClO(4) solution. The determined value of the Tafel slope of 35 mV dec(-1) and an exchange current density of 0.45 mA cm(-2) per real surface area of the Pt are in good accordance with those already reported in the literature for the HOR at polycrystalline Pt and Pt nanocatalysts in acid solutions. This new catalyst exhibited better activity for the HOR in comparison with Pt nanocatalyst supported on Vulcan (R) XC-72R high area carbon.", journal = "Journal of the Serbian Chemical Society", title = "A novel platinum-based nanocatalyst at a niobia-doped titania support for the hydrogen oxidation reaction", pages = "1152-1139", number = "8", volume = "76", doi = "10.2298/JSC100823100E" }
Elezovic, N. R., Babić, B. M., Radmilovic, V., Gajic-Krstajic, L. M., Krstajic, N. V.,& Vracar, L. M.. (2011). A novel platinum-based nanocatalyst at a niobia-doped titania support for the hydrogen oxidation reaction. in Journal of the Serbian Chemical Society, 76(8), 1139-1152. https://doi.org/10.2298/JSC100823100E
Elezovic NR, Babić BM, Radmilovic V, Gajic-Krstajic LM, Krstajic NV, Vracar LM. A novel platinum-based nanocatalyst at a niobia-doped titania support for the hydrogen oxidation reaction. in Journal of the Serbian Chemical Society. 2011;76(8):1139-1152. doi:10.2298/JSC100823100E .
Elezovic, Nevenka R., Babić, Biljana M., Radmilovic, Velimir, Gajic-Krstajic, Ljiljana M., Krstajic, Nedeljko V., Vracar, Ljiljana M., "A novel platinum-based nanocatalyst at a niobia-doped titania support for the hydrogen oxidation reaction" in Journal of the Serbian Chemical Society, 76, no. 8 (2011):1139-1152, https://doi.org/10.2298/JSC100823100E . .