TechnoRep - Faculty of Technology and Metallurgy Repository
University of Belgrade - Faculty of Technology and Metallurgy
    • English
    • Српски
    • Српски (Serbia)
  • English 
    • English
    • Serbian (Cyrillic)
    • Serbian (Latin)
  • Login
View Item 
  •   TechnoRep
  • Tehnološko-metalurški fakultet
  • Radovi istraživača / Researchers’ publications (TMF)
  • View Item
  •   TechnoRep
  • Tehnološko-metalurški fakultet
  • Radovi istraživača / Researchers’ publications (TMF)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

On the kinetics of the hydrogen evolution reaction on Ni-MoOx composite catalysts in alkaline solutions

Thumbnail
2012
255.pdf (594.2Kb)
Authors
Jović, Borka
Lačnjevac, Uroš
Jović, Vladimir
Gajić Krstajić, Ljiljana
Krstajić, Nedeljko
Article (Published version)
Metadata
Show full item record
Abstract
MoO3 particles were co-deposited with Ni onto smooth or rough Ni supports from modified Watt’s baths of different compositions. Morphology and composition of the electrodeposits were characterized by means of cyclic voltammetry, X-ray diffraction, scanning electron microscopy, transmission electron microscopy and energy dispersive X-ray spectroscopy. The electrocatalytic activity of the composite catalysts for H2 evolution in alkaline solutions was determined by quasi-stationary polarization curves. Activity increases with MoOx content in the Ni deposit up to a limiting value. Composite Ni-MoOx catalyst performed high catalytic activity, similar to that of commercial Ni-RuO2 catalyst. Stability tests showed that Ni-MoOx codeposits are stable under condition of constant current and exhibit excellent tolerance to repeated short-circuiting.
Keywords:
hydrogen evolution / nickel / molybdenum trioxide / composite catalyst / co-deposition
Source:
Journal of the Serbian Chemical Society, 2012, 77, 2, 211-224
Publisher:
  • Belgrade : Serbian Chemical Society
Funding / projects:
  • Development, characterization and application nanostructured and composite electrocatalysts and interactive supports for fuel cells and water electrolysis (RS-172054)

DOI: 10.2298/JSC110621185J

ISSN: 0352-5139; 1820-7421 (Online)

Scopus: 2-s2.0-84858271406
[ Google Scholar ]
10
Handle
https://hdl.handle.net/21.15107/rcub_dais_258
URI
http://TechnoRep.tmf.bg.ac.rs/handle/123456789/5719
Collections
  • Radovi istraživača / Researchers’ publications (TMF)
Institution/Community
Tehnološko-metalurški fakultet
TY  - JOUR
AU  - Jović, Borka
AU  - Lačnjevac, Uroš
AU  - Jović, Vladimir
AU  - Gajić Krstajić, Ljiljana
AU  - Krstajić, Nedeljko
PY  - 2012
UR  - http://TechnoRep.tmf.bg.ac.rs/handle/123456789/5719
AB  - MoO3 particles were co-deposited with Ni onto smooth or rough Ni supports from modified Watt’s baths of different compositions. Morphology and composition of the electrodeposits were characterized by means of cyclic voltammetry, X-ray diffraction, scanning electron microscopy, transmission electron microscopy and energy dispersive X-ray spectroscopy. The electrocatalytic activity of the composite catalysts for H2 evolution in alkaline solutions was determined by quasi-stationary polarization curves. Activity increases with MoOx content in the Ni deposit up to a limiting value. Composite Ni-MoOx catalyst performed high catalytic activity, similar to that of commercial Ni-RuO2 catalyst. Stability tests showed that Ni-MoOx codeposits are stable under condition of constant current and exhibit excellent tolerance to repeated short-circuiting.
PB  - Belgrade : Serbian Chemical Society
T2  - Journal of the Serbian Chemical Society
T1  - On the kinetics of the hydrogen evolution reaction on Ni-MoOx composite catalysts in alkaline solutions
EP  - 224
IS  - 2
SP  - 211
VL  - 77
DO  - 10.2298/JSC110621185J
UR  - https://hdl.handle.net/21.15107/rcub_dais_258
ER  - 
@article{
author = "Jović, Borka and Lačnjevac, Uroš and Jović, Vladimir and Gajić Krstajić, Ljiljana and Krstajić, Nedeljko",
year = "2012",
abstract = "MoO3 particles were co-deposited with Ni onto smooth or rough Ni supports from modified Watt’s baths of different compositions. Morphology and composition of the electrodeposits were characterized by means of cyclic voltammetry, X-ray diffraction, scanning electron microscopy, transmission electron microscopy and energy dispersive X-ray spectroscopy. The electrocatalytic activity of the composite catalysts for H2 evolution in alkaline solutions was determined by quasi-stationary polarization curves. Activity increases with MoOx content in the Ni deposit up to a limiting value. Composite Ni-MoOx catalyst performed high catalytic activity, similar to that of commercial Ni-RuO2 catalyst. Stability tests showed that Ni-MoOx codeposits are stable under condition of constant current and exhibit excellent tolerance to repeated short-circuiting.",
publisher = "Belgrade : Serbian Chemical Society",
journal = "Journal of the Serbian Chemical Society",
title = "On the kinetics of the hydrogen evolution reaction on Ni-MoOx composite catalysts in alkaline solutions",
pages = "224-211",
number = "2",
volume = "77",
doi = "10.2298/JSC110621185J",
url = "https://hdl.handle.net/21.15107/rcub_dais_258"
}
Jović, B., Lačnjevac, U., Jović, V., Gajić Krstajić, L.,& Krstajić, N.. (2012). On the kinetics of the hydrogen evolution reaction on Ni-MoOx composite catalysts in alkaline solutions. in Journal of the Serbian Chemical Society
Belgrade : Serbian Chemical Society., 77(2), 211-224.
https://doi.org/10.2298/JSC110621185J
https://hdl.handle.net/21.15107/rcub_dais_258
Jović B, Lačnjevac U, Jović V, Gajić Krstajić L, Krstajić N. On the kinetics of the hydrogen evolution reaction on Ni-MoOx composite catalysts in alkaline solutions. in Journal of the Serbian Chemical Society. 2012;77(2):211-224.
doi:10.2298/JSC110621185J
https://hdl.handle.net/21.15107/rcub_dais_258 .
Jović, Borka, Lačnjevac, Uroš, Jović, Vladimir, Gajić Krstajić, Ljiljana, Krstajić, Nedeljko, "On the kinetics of the hydrogen evolution reaction on Ni-MoOx composite catalysts in alkaline solutions" in Journal of the Serbian Chemical Society, 77, no. 2 (2012):211-224,
https://doi.org/10.2298/JSC110621185J .,
https://hdl.handle.net/21.15107/rcub_dais_258 .

DSpace software copyright © 2002-2015  DuraSpace
About TechnoRep | Send Feedback

OpenAIRERCUB
 

 

All of DSpaceInstitutions/communitiesAuthorsTitlesSubjectsThis institutionAuthorsTitlesSubjects

Statistics

View Usage Statistics

DSpace software copyright © 2002-2015  DuraSpace
About TechnoRep | Send Feedback

OpenAIRERCUB