TechnoRep - Faculty of Technology and Metallurgy Repository
University of Belgrade - Faculty of Technology and Metallurgy
    • English
    • Српски
    • Српски (Serbia)
  • English 
    • English
    • Serbian (Cyrillic)
    • Serbian (Latin)
  • Login
View Item 
  •   TechnoRep
  • Tehnološko-metalurški fakultet
  • Radovi istraživača / Researchers’ publications (TMF)
  • View Item
  •   TechnoRep
  • Tehnološko-metalurški fakultet
  • Radovi istraživača / Researchers’ publications (TMF)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Structure and properties of thermoplastic polyurethanes based on poly(dimethylsiloxane): Assessment of biocompatibility

Authorized Users Only
2014
Authors
Pergal, Marija
Nestorov, Jelena
Tovilović, Gordana
Ostojić, Sanja
Gođevac, Dejan
Vasiljević-Radović, Dana
Đonlagić, Jasna
Article (Published version)
Metadata
Show full item record
Abstract
Properties and biocompatibility of a series of thermoplastic poly(urethane-siloxane)s (TPUSs) based on alpha,omega-dihydroxy ethoxy propyl poly(dimethylsiloxane) (PDMS) for potential biomedical application were studied. Thin films of TPUSs with a different PDMS soft segment content were characterized by H-1 NMR, quantitative C-13 NMR, Fourier transform infrared spectroscopy (FTIR), atomic force microscopy (AFM), differential scanning calorimetry (DSC), dynamic mechanical analysis (DMA), contact angle, and water absorption measurements. Different techniques (FTIR, AFM, and DMA) showed that decrease of PDMS content promotes microphase separation in TPUSs. Samples with a higher PDMS content have more hydrophobic surface and better waterproof performances, but lower degree of crystallinity. Biocompatibility of TPUSs was examined after attachment of endothelial cells to the untreated copolymer surface or surface pretreated with multicomponent protein mixture, and by using competitive protei...n adsorption assay. TPUSs did not exhibit any cytotoxicity toward endothelial cells, as measured by lactate dehydrogenase and 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl-tetrazolium bromide assays. The untreated and proteins preadsorbed TPUS samples favored endothelial cells adhesion and growth, indicating good biocompatibility. All TPUSs adsorbed more albumin than fibrinogen in competitive protein adsorption experiment, which is feature regarded as beneficial for biocompatibility. The results indicate that TPUSs have good surface, thermo-mechanical, and biocompatible properties, which can be tailored for biomedical application requirements by adequate selection of the soft/hard segments ratio of the copolymers.

Keywords:
poly(urethane-siloxane) films / biocompatibility / cell adhesion / competitive protein adsorption
Source:
Journal of Biomedical Materials Research Part A, 2014, 102, 11, 3951-3964
Publisher:
  • Wiley-Blackwell, Hoboken
Funding / projects:
  • Synthesis and characterization of novel functional polymers and polymeric nanocomposites (RS-172062)

DOI: 10.1002/jbm.a.35071

ISSN: 1549-3296

PubMed: 24376027

WoS: 000343010100019

Scopus: 2-s2.0-84908071472
[ Google Scholar ]
46
36
URI
http://TechnoRep.tmf.bg.ac.rs/handle/123456789/5788
Collections
  • Radovi istraživača / Researchers’ publications (TMF)
Institution/Community
Tehnološko-metalurški fakultet
TY  - JOUR
AU  - Pergal, Marija
AU  - Nestorov, Jelena
AU  - Tovilović, Gordana
AU  - Ostojić, Sanja
AU  - Gođevac, Dejan
AU  - Vasiljević-Radović, Dana
AU  - Đonlagić, Jasna
PY  - 2014
UR  - http://TechnoRep.tmf.bg.ac.rs/handle/123456789/5788
AB  - Properties and biocompatibility of a series of thermoplastic poly(urethane-siloxane)s (TPUSs) based on alpha,omega-dihydroxy ethoxy propyl poly(dimethylsiloxane) (PDMS) for potential biomedical application were studied. Thin films of TPUSs with a different PDMS soft segment content were characterized by H-1 NMR, quantitative C-13 NMR, Fourier transform infrared spectroscopy (FTIR), atomic force microscopy (AFM), differential scanning calorimetry (DSC), dynamic mechanical analysis (DMA), contact angle, and water absorption measurements. Different techniques (FTIR, AFM, and DMA) showed that decrease of PDMS content promotes microphase separation in TPUSs. Samples with a higher PDMS content have more hydrophobic surface and better waterproof performances, but lower degree of crystallinity. Biocompatibility of TPUSs was examined after attachment of endothelial cells to the untreated copolymer surface or surface pretreated with multicomponent protein mixture, and by using competitive protein adsorption assay. TPUSs did not exhibit any cytotoxicity toward endothelial cells, as measured by lactate dehydrogenase and 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl-tetrazolium bromide assays. The untreated and proteins preadsorbed TPUS samples favored endothelial cells adhesion and growth, indicating good biocompatibility. All TPUSs adsorbed more albumin than fibrinogen in competitive protein adsorption experiment, which is feature regarded as beneficial for biocompatibility. The results indicate that TPUSs have good surface, thermo-mechanical, and biocompatible properties, which can be tailored for biomedical application requirements by adequate selection of the soft/hard segments ratio of the copolymers.
PB  - Wiley-Blackwell, Hoboken
T2  - Journal of Biomedical Materials Research Part A
T1  - Structure and properties of thermoplastic polyurethanes based on poly(dimethylsiloxane): Assessment of biocompatibility
EP  - 3964
IS  - 11
SP  - 3951
VL  - 102
DO  - 10.1002/jbm.a.35071
ER  - 
@article{
author = "Pergal, Marija and Nestorov, Jelena and Tovilović, Gordana and Ostojić, Sanja and Gođevac, Dejan and Vasiljević-Radović, Dana and Đonlagić, Jasna",
year = "2014",
abstract = "Properties and biocompatibility of a series of thermoplastic poly(urethane-siloxane)s (TPUSs) based on alpha,omega-dihydroxy ethoxy propyl poly(dimethylsiloxane) (PDMS) for potential biomedical application were studied. Thin films of TPUSs with a different PDMS soft segment content were characterized by H-1 NMR, quantitative C-13 NMR, Fourier transform infrared spectroscopy (FTIR), atomic force microscopy (AFM), differential scanning calorimetry (DSC), dynamic mechanical analysis (DMA), contact angle, and water absorption measurements. Different techniques (FTIR, AFM, and DMA) showed that decrease of PDMS content promotes microphase separation in TPUSs. Samples with a higher PDMS content have more hydrophobic surface and better waterproof performances, but lower degree of crystallinity. Biocompatibility of TPUSs was examined after attachment of endothelial cells to the untreated copolymer surface or surface pretreated with multicomponent protein mixture, and by using competitive protein adsorption assay. TPUSs did not exhibit any cytotoxicity toward endothelial cells, as measured by lactate dehydrogenase and 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl-tetrazolium bromide assays. The untreated and proteins preadsorbed TPUS samples favored endothelial cells adhesion and growth, indicating good biocompatibility. All TPUSs adsorbed more albumin than fibrinogen in competitive protein adsorption experiment, which is feature regarded as beneficial for biocompatibility. The results indicate that TPUSs have good surface, thermo-mechanical, and biocompatible properties, which can be tailored for biomedical application requirements by adequate selection of the soft/hard segments ratio of the copolymers.",
publisher = "Wiley-Blackwell, Hoboken",
journal = "Journal of Biomedical Materials Research Part A",
title = "Structure and properties of thermoplastic polyurethanes based on poly(dimethylsiloxane): Assessment of biocompatibility",
pages = "3964-3951",
number = "11",
volume = "102",
doi = "10.1002/jbm.a.35071"
}
Pergal, M., Nestorov, J., Tovilović, G., Ostojić, S., Gođevac, D., Vasiljević-Radović, D.,& Đonlagić, J.. (2014). Structure and properties of thermoplastic polyurethanes based on poly(dimethylsiloxane): Assessment of biocompatibility. in Journal of Biomedical Materials Research Part A
Wiley-Blackwell, Hoboken., 102(11), 3951-3964.
https://doi.org/10.1002/jbm.a.35071
Pergal M, Nestorov J, Tovilović G, Ostojić S, Gođevac D, Vasiljević-Radović D, Đonlagić J. Structure and properties of thermoplastic polyurethanes based on poly(dimethylsiloxane): Assessment of biocompatibility. in Journal of Biomedical Materials Research Part A. 2014;102(11):3951-3964.
doi:10.1002/jbm.a.35071 .
Pergal, Marija, Nestorov, Jelena, Tovilović, Gordana, Ostojić, Sanja, Gođevac, Dejan, Vasiljević-Radović, Dana, Đonlagić, Jasna, "Structure and properties of thermoplastic polyurethanes based on poly(dimethylsiloxane): Assessment of biocompatibility" in Journal of Biomedical Materials Research Part A, 102, no. 11 (2014):3951-3964,
https://doi.org/10.1002/jbm.a.35071 . .

DSpace software copyright © 2002-2015  DuraSpace
About TechnoRep | Send Feedback

OpenAIRERCUB
 

 

All of DSpaceInstitutions/communitiesAuthorsTitlesSubjectsThis institutionAuthorsTitlesSubjects

Statistics

View Usage Statistics

DSpace software copyright © 2002-2015  DuraSpace
About TechnoRep | Send Feedback

OpenAIRERCUB