TechnoRep - Faculty of Technology and Metallurgy Repository
University of Belgrade - Faculty of Technology and Metallurgy
    • English
    • Српски
    • Српски (Serbia)
  • English 
    • English
    • Serbian (Cyrillic)
    • Serbian (Latin)
  • Login
View Item 
  •   TechnoRep
  • Tehnološko-metalurški fakultet
  • Radovi istraživača / Researchers’ publications (TMF)
  • View Item
  •   TechnoRep
  • Tehnološko-metalurški fakultet
  • Radovi istraživača / Researchers’ publications (TMF)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Ni-(Ebonex-supported Ir) composite coatings as electrocatalysts for alkaline water electrolysis. Part I: Hydrogen evolution

Authorized Users Only
2015
Authors
Jović, Borka
Jović, Vladimir
Lačnjevac, Uroš
Gajić Krstajić, Ljiljana
Krstajić, Nedeljko
Article (Published version)
Metadata
Show full item record
Abstract
The hydrogen evolution reaction (HER) was studied at electrodeposited Ni and Ni-(Ebonex/Ir) composite coatings in 1 mol dm-3 NaOH solution at 25 °C. The Ni-(Ebonex/Ir) coatings were electrodeposited from a nickel Watts type bath containing different amounts of suspended Ebonex/Ir(30 wt.%) powder particles (0-2 g dm-3) onto a Ni 40 mesh substrate. The electrodes were investigated by cyclic voltammetry (CV), scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), electrochemical impedance spectroscopy (EIS) and polarization measurements. It was shown that the roughness factor of coatings increased to a maximum value of 27 with increasing the concentration of Ebonex/Ir particles in the deposition bath, while that of a pure Ni coating was found to be 3.2. In the whole potential range of the HER only one Tafel slope of about -120 mV dec-1 was observed at all polarization curves. Considerably improved intrinsic catalytic activity for the HER compared to pure Ni was ac...hieved with the composite coating deposited from the bath with the lowest concentration of Ebonex/Ir particles (0.1 g dm-3). Further enhancement of the apparent catalytic activity for the HER of Ni-(Ebonex/Ir) composite coatings obtained at higher concentrations of suspended Ebonex/Ir particles in the bath was attributed only to the increase of their electrochemically active surface area. © 2015 Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.

Keywords:
alkaline solution / H2 evolution / intrinsic activity / Ir catalyst / Ni composite coatings
Source:
International Journal of Hydrogen Energy, 2015, 40, 33, 10480-10490
Publisher:
  • Elsevier
Funding / projects:
  • Development, characterization and application nanostructured and composite electrocatalysts and interactive supports for fuel cells and water electrolysis (RS-172054)

DOI: 10.1016/j.ijhydene.2015.06.127

ISSN: 0360-3199

WoS: 000359170400011

Scopus: 2-s2.0-84938199080
[ Google Scholar ]
19
17
Handle
https://hdl.handle.net/21.15107/rcub_dais_3530
URI
http://TechnoRep.tmf.bg.ac.rs/handle/123456789/5793
Collections
  • Radovi istraživača / Researchers’ publications (TMF)
Institution/Community
Tehnološko-metalurški fakultet
TY  - JOUR
AU  - Jović, Borka
AU  - Jović, Vladimir
AU  - Lačnjevac, Uroš
AU  - Gajić Krstajić, Ljiljana
AU  - Krstajić, Nedeljko
PY  - 2015
UR  - http://TechnoRep.tmf.bg.ac.rs/handle/123456789/5793
AB  - The hydrogen evolution reaction (HER) was studied at electrodeposited Ni and Ni-(Ebonex/Ir) composite coatings in 1 mol dm-3 NaOH solution at 25 °C. The Ni-(Ebonex/Ir) coatings were electrodeposited from a nickel Watts type bath containing different amounts of suspended Ebonex/Ir(30 wt.%) powder particles (0-2 g dm-3) onto a Ni 40 mesh substrate. The electrodes were investigated by cyclic voltammetry (CV), scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), electrochemical impedance spectroscopy (EIS) and polarization measurements. It was shown that the roughness factor of coatings increased to a maximum value of 27 with increasing the concentration of Ebonex/Ir particles in the deposition bath, while that of a pure Ni coating was found to be 3.2. In the whole potential range of the HER only one Tafel slope of about -120 mV dec-1 was observed at all polarization curves. Considerably improved intrinsic catalytic activity for the HER compared to pure Ni was achieved with the composite coating deposited from the bath with the lowest concentration of Ebonex/Ir particles (0.1 g dm-3). Further enhancement of the apparent catalytic activity for the HER of Ni-(Ebonex/Ir) composite coatings obtained at higher concentrations of suspended Ebonex/Ir particles in the bath was attributed only to the increase of their electrochemically active surface area. © 2015 Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.
PB  - Elsevier
T2  - International Journal of Hydrogen Energy
T1  - Ni-(Ebonex-supported Ir) composite coatings as electrocatalysts for alkaline water electrolysis. Part I: Hydrogen evolution
EP  - 10490
IS  - 33
SP  - 10480
VL  - 40
DO  - 10.1016/j.ijhydene.2015.06.127
UR  - https://hdl.handle.net/21.15107/rcub_dais_3530
ER  - 
@article{
author = "Jović, Borka and Jović, Vladimir and Lačnjevac, Uroš and Gajić Krstajić, Ljiljana and Krstajić, Nedeljko",
year = "2015",
abstract = "The hydrogen evolution reaction (HER) was studied at electrodeposited Ni and Ni-(Ebonex/Ir) composite coatings in 1 mol dm-3 NaOH solution at 25 °C. The Ni-(Ebonex/Ir) coatings were electrodeposited from a nickel Watts type bath containing different amounts of suspended Ebonex/Ir(30 wt.%) powder particles (0-2 g dm-3) onto a Ni 40 mesh substrate. The electrodes were investigated by cyclic voltammetry (CV), scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), electrochemical impedance spectroscopy (EIS) and polarization measurements. It was shown that the roughness factor of coatings increased to a maximum value of 27 with increasing the concentration of Ebonex/Ir particles in the deposition bath, while that of a pure Ni coating was found to be 3.2. In the whole potential range of the HER only one Tafel slope of about -120 mV dec-1 was observed at all polarization curves. Considerably improved intrinsic catalytic activity for the HER compared to pure Ni was achieved with the composite coating deposited from the bath with the lowest concentration of Ebonex/Ir particles (0.1 g dm-3). Further enhancement of the apparent catalytic activity for the HER of Ni-(Ebonex/Ir) composite coatings obtained at higher concentrations of suspended Ebonex/Ir particles in the bath was attributed only to the increase of their electrochemically active surface area. © 2015 Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.",
publisher = "Elsevier",
journal = "International Journal of Hydrogen Energy",
title = "Ni-(Ebonex-supported Ir) composite coatings as electrocatalysts for alkaline water electrolysis. Part I: Hydrogen evolution",
pages = "10490-10480",
number = "33",
volume = "40",
doi = "10.1016/j.ijhydene.2015.06.127",
url = "https://hdl.handle.net/21.15107/rcub_dais_3530"
}
Jović, B., Jović, V., Lačnjevac, U., Gajić Krstajić, L.,& Krstajić, N.. (2015). Ni-(Ebonex-supported Ir) composite coatings as electrocatalysts for alkaline water electrolysis. Part I: Hydrogen evolution. in International Journal of Hydrogen Energy
Elsevier., 40(33), 10480-10490.
https://doi.org/10.1016/j.ijhydene.2015.06.127
https://hdl.handle.net/21.15107/rcub_dais_3530
Jović B, Jović V, Lačnjevac U, Gajić Krstajić L, Krstajić N. Ni-(Ebonex-supported Ir) composite coatings as electrocatalysts for alkaline water electrolysis. Part I: Hydrogen evolution. in International Journal of Hydrogen Energy. 2015;40(33):10480-10490.
doi:10.1016/j.ijhydene.2015.06.127
https://hdl.handle.net/21.15107/rcub_dais_3530 .
Jović, Borka, Jović, Vladimir, Lačnjevac, Uroš, Gajić Krstajić, Ljiljana, Krstajić, Nedeljko, "Ni-(Ebonex-supported Ir) composite coatings as electrocatalysts for alkaline water electrolysis. Part I: Hydrogen evolution" in International Journal of Hydrogen Energy, 40, no. 33 (2015):10480-10490,
https://doi.org/10.1016/j.ijhydene.2015.06.127 .,
https://hdl.handle.net/21.15107/rcub_dais_3530 .

DSpace software copyright © 2002-2015  DuraSpace
About TechnoRep | Send Feedback

OpenAIRERCUB
 

 

All of DSpaceInstitutions/communitiesAuthorsTitlesSubjectsThis institutionAuthorsTitlesSubjects

Statistics

View Usage Statistics

DSpace software copyright © 2002-2015  DuraSpace
About TechnoRep | Send Feedback

OpenAIRERCUB