TechnoRep - Faculty of Technology and Metallurgy Repository
University of Belgrade - Faculty of Technology and Metallurgy
    • English
    • Српски
    • Српски (Serbia)
  • English 
    • English
    • Serbian (Cyrillic)
    • Serbian (Latin)
  • Login
View Item 
  •   TechnoRep
  • Tehnološko-metalurški fakultet
  • Radovi istraživača / Researchers’ publications (TMF)
  • View Item
  •   TechnoRep
  • Tehnološko-metalurški fakultet
  • Radovi istraživača / Researchers’ publications (TMF)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Core-shell superparamagnetic iron oxide nanoparticle (SPION) clusters: TEM micrograph analysis, particle design and shape analysis

Authorized Users Only
2016
Authors
Kopanja, Lazar
Kralj, Slavko
Žunić, Dragiša
Lončar, Boris B.
Tadić, Marin
Article (Published version)
Metadata
Show full item record
Abstract
For the first time, particle shape analysis of silica coated iron oxide (maghemite/magnetite) nanoparticle clusters (core-shell nanostructures) is discussed using computational methods. We analyzed three samples of core-shell nanostructures synthesized with different thickness of the silica shell. A new computational method is presented and successfully applied to the segmentation of the core-shell nanoparticles, as one of the main problems in image analysis of the TEM micrographs. We have introduced the circularity coefficient, marked with k(circ) and defined as the ratio of circularity measure C-2(S) of nanoparticles core and circularity measure core-shell nanoparticles in order to answer the question how the shell affects the overall shape of the final core-shell structure, with respect to circularity. More precisely, the circularity coefficient determines whether the circularity of the core-shell nanoparticle is higher, lower or equal to the circularity of the core. We have also de...termined the shells share in the overall area of the core-shell nanoparticle. The core-shell nanoparticle clusters here investigated exhibit superparamagnetic properties at room temperature, thus emphasizing their potential for use in practical applications such as in biomedical and particle separation. We show that the saturation magnetization strength can be easily adjusted by controlling the thickness of the silica shell. (C) 2016 Elsevier Ltd and Techna Group S.r.l. All rights reserved.

Keywords:
Synthesis / Superparamagnetism / Magnetic properties / Image analysis / Circularity / Shape descriptors
Source:
Ceramics International, 2016, 42, 9, 10976-10984
Publisher:
  • Elsevier
Funding / projects:
  • Magnetic and radionuclide labeled nanostructured materials for medical applications (RS-45015)
  • Representations of logical structures and formal languages and their application in computing (RS-174026)

DOI: 10.1016/j.ceramint.2016.03.235

ISSN: 0272-8842; 1873-3956

WoS: 000376693800060

Scopus: 2-s2.0-84961908018
[ Google Scholar ]
50
43
URI
http://TechnoRep.tmf.bg.ac.rs/handle/123456789/5810
Collections
  • Radovi istraživača / Researchers’ publications (TMF)
Institution/Community
Tehnološko-metalurški fakultet
TY  - JOUR
AU  - Kopanja, Lazar
AU  - Kralj, Slavko
AU  - Žunić, Dragiša
AU  - Lončar, Boris B.
AU  - Tadić, Marin
PY  - 2016
UR  - http://TechnoRep.tmf.bg.ac.rs/handle/123456789/5810
AB  - For the first time, particle shape analysis of silica coated iron oxide (maghemite/magnetite) nanoparticle clusters (core-shell nanostructures) is discussed using computational methods. We analyzed three samples of core-shell nanostructures synthesized with different thickness of the silica shell. A new computational method is presented and successfully applied to the segmentation of the core-shell nanoparticles, as one of the main problems in image analysis of the TEM micrographs. We have introduced the circularity coefficient, marked with k(circ) and defined as the ratio of circularity measure C-2(S) of nanoparticles core and circularity measure core-shell nanoparticles in order to answer the question how the shell affects the overall shape of the final core-shell structure, with respect to circularity. More precisely, the circularity coefficient determines whether the circularity of the core-shell nanoparticle is higher, lower or equal to the circularity of the core. We have also determined the shells share in the overall area of the core-shell nanoparticle. The core-shell nanoparticle clusters here investigated exhibit superparamagnetic properties at room temperature, thus emphasizing their potential for use in practical applications such as in biomedical and particle separation. We show that the saturation magnetization strength can be easily adjusted by controlling the thickness of the silica shell. (C) 2016 Elsevier Ltd and Techna Group S.r.l. All rights reserved.
PB  - Elsevier
T2  - Ceramics International
T1  - Core-shell superparamagnetic iron oxide nanoparticle (SPION) clusters: TEM micrograph analysis, particle design and shape analysis
EP  - 10984
IS  - 9
SP  - 10976
VL  - 42
DO  - 10.1016/j.ceramint.2016.03.235
ER  - 
@article{
author = "Kopanja, Lazar and Kralj, Slavko and Žunić, Dragiša and Lončar, Boris B. and Tadić, Marin",
year = "2016",
abstract = "For the first time, particle shape analysis of silica coated iron oxide (maghemite/magnetite) nanoparticle clusters (core-shell nanostructures) is discussed using computational methods. We analyzed three samples of core-shell nanostructures synthesized with different thickness of the silica shell. A new computational method is presented and successfully applied to the segmentation of the core-shell nanoparticles, as one of the main problems in image analysis of the TEM micrographs. We have introduced the circularity coefficient, marked with k(circ) and defined as the ratio of circularity measure C-2(S) of nanoparticles core and circularity measure core-shell nanoparticles in order to answer the question how the shell affects the overall shape of the final core-shell structure, with respect to circularity. More precisely, the circularity coefficient determines whether the circularity of the core-shell nanoparticle is higher, lower or equal to the circularity of the core. We have also determined the shells share in the overall area of the core-shell nanoparticle. The core-shell nanoparticle clusters here investigated exhibit superparamagnetic properties at room temperature, thus emphasizing their potential for use in practical applications such as in biomedical and particle separation. We show that the saturation magnetization strength can be easily adjusted by controlling the thickness of the silica shell. (C) 2016 Elsevier Ltd and Techna Group S.r.l. All rights reserved.",
publisher = "Elsevier",
journal = "Ceramics International",
title = "Core-shell superparamagnetic iron oxide nanoparticle (SPION) clusters: TEM micrograph analysis, particle design and shape analysis",
pages = "10984-10976",
number = "9",
volume = "42",
doi = "10.1016/j.ceramint.2016.03.235"
}
Kopanja, L., Kralj, S., Žunić, D., Lončar, B. B.,& Tadić, M.. (2016). Core-shell superparamagnetic iron oxide nanoparticle (SPION) clusters: TEM micrograph analysis, particle design and shape analysis. in Ceramics International
Elsevier., 42(9), 10976-10984.
https://doi.org/10.1016/j.ceramint.2016.03.235
Kopanja L, Kralj S, Žunić D, Lončar BB, Tadić M. Core-shell superparamagnetic iron oxide nanoparticle (SPION) clusters: TEM micrograph analysis, particle design and shape analysis. in Ceramics International. 2016;42(9):10976-10984.
doi:10.1016/j.ceramint.2016.03.235 .
Kopanja, Lazar, Kralj, Slavko, Žunić, Dragiša, Lončar, Boris B., Tadić, Marin, "Core-shell superparamagnetic iron oxide nanoparticle (SPION) clusters: TEM micrograph analysis, particle design and shape analysis" in Ceramics International, 42, no. 9 (2016):10976-10984,
https://doi.org/10.1016/j.ceramint.2016.03.235 . .

DSpace software copyright © 2002-2015  DuraSpace
About TechnoRep | Send Feedback

OpenAIRERCUB
 

 

All of DSpaceInstitutions/communitiesAuthorsTitlesSubjectsThis institutionAuthorsTitlesSubjects

Statistics

View Usage Statistics

DSpace software copyright © 2002-2015  DuraSpace
About TechnoRep | Send Feedback

OpenAIRERCUB