TechnoRep - Faculty of Technology and Metallurgy Repository
University of Belgrade - Faculty of Technology and Metallurgy
    • English
    • Српски
    • Српски (Serbia)
  • English 
    • English
    • Serbian (Cyrillic)
    • Serbian (Latin)
  • Login
View Item 
  •   TechnoRep
  • Tehnološko-metalurški fakultet
  • Radovi istraživača / Researchers’ publications (TMF)
  • View Item
  •   TechnoRep
  • Tehnološko-metalurški fakultet
  • Radovi istraživača / Researchers’ publications (TMF)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Ru layers electrodeposited onto highly stable Ti2AlC substrates as cathodes for hydrogen evolution in sulfuric acid solutions

No Thumbnail
Authors
Jovic, B M
Jović, Vladimir D.
Lačnjevac, Uroš
Stevanović, Sanja
Kovac, J
Radovic, M
Krstajić, Nedeljko V.
Article (Published version)
Metadata
Show full item record
Abstract
In this work, the hydrogen evolution reaction (HER) was studied on Ru coated Ti2AlC electrodes in 1.0 mol dm(-3) H2SO4 at 25 degrees C. Ti2AlC was found to be a highly stable substrate in sulfuric acid solutions due to the formation of a passivating oxide layer on the surface, which was confirmed by the X-ray photoelectron spectroscopy (XPS) analysis of as-prepared and anodically treated Ti2AlC samples. Ru films were electrodeposited onto Ti2AlC substrates by cycling the potential of Ti2AlC in the solution containing 0.01 mol dm(-3) RuCl3 + 0.1 mol dm(-3) H2SO4 between -0.5 V and 0.4 V vs. a saturated calomel electrode (SCE) at the sweep rate of 20 mV s(-1). Four Ru/Ti2AlC samples were prepared, obtained at 5, 10, 15 and 20 cycles of Ru electrodeposition. Characterization of samples was performed by scanning electron microscopy (SEM) and cyclic voltammetry (CV), while the thickness of the electrodeposited Ru layers was determined by atomic force microscopy (AFM). It was found that the ...most compact sample with the thickness of about 0.42 mu m was obtained after 5 cycles. Electrochemical impedance spectroscopy (EIS) and steady-state polarization measurements showed that all Ru/Ti2AlC electrodes were exceptionally active for the HER. A Tafel slope of about -60 mV dec(-1) was observed on all polarization curves in the range of high cathodic current densities. Based on formal kinetics analysis, an appropriate mechanism for the HER on Ru/Ti2AlC was suggested.

Keywords:
Ti2AlC / Electrodeposited Ru / H-2 evolution / Acid solution / Electrochemical impedance spectroscopy / Cyclic voltammetry
Source:
Journal of Electroanalytical Chemistry, 2016, 766, 78-86
Publisher:
  • Elsevier
Funding / projects:
  • Development, characterization and application nanostructured and composite electrocatalysts and interactive supports for fuel cells and water electrolysis (RS-172054)
  • Jozef Stefan Institute, Ljubljana, Slovenia - 451-03-3095/2014-09/26

DOI: 10.1016/j.jelechem.2016.01.038

ISSN: 1572-6657

WoS: 000374605200011

Scopus: 2-s2.0-84957809274
[ Google Scholar ]
17
14
URI
http://TechnoRep.tmf.bg.ac.rs/handle/123456789/5839
Collections
  • Radovi istraživača / Researchers’ publications (TMF)
Institution/Community
Tehnološko-metalurški fakultet
TY  - JOUR
AU  - Jovic, B M
AU  - Jović, Vladimir D.
AU  - Lačnjevac, Uroš
AU  - Stevanović, Sanja
AU  - Kovac, J
AU  - Radovic, M
AU  - Krstajić, Nedeljko V.
PY  - 2016
UR  - http://TechnoRep.tmf.bg.ac.rs/handle/123456789/5839
AB  - In this work, the hydrogen evolution reaction (HER) was studied on Ru coated Ti2AlC electrodes in 1.0 mol dm(-3) H2SO4 at 25 degrees C. Ti2AlC was found to be a highly stable substrate in sulfuric acid solutions due to the formation of a passivating oxide layer on the surface, which was confirmed by the X-ray photoelectron spectroscopy (XPS) analysis of as-prepared and anodically treated Ti2AlC samples. Ru films were electrodeposited onto Ti2AlC substrates by cycling the potential of Ti2AlC in the solution containing 0.01 mol dm(-3) RuCl3 + 0.1 mol dm(-3) H2SO4 between -0.5 V and 0.4 V vs. a saturated calomel electrode (SCE) at the sweep rate of 20 mV s(-1). Four Ru/Ti2AlC samples were prepared, obtained at 5, 10, 15 and 20 cycles of Ru electrodeposition. Characterization of samples was performed by scanning electron microscopy (SEM) and cyclic voltammetry (CV), while the thickness of the electrodeposited Ru layers was determined by atomic force microscopy (AFM). It was found that the most compact sample with the thickness of about 0.42 mu m was obtained after 5 cycles. Electrochemical impedance spectroscopy (EIS) and steady-state polarization measurements showed that all Ru/Ti2AlC electrodes were exceptionally active for the HER. A Tafel slope of about -60 mV dec(-1) was observed on all polarization curves in the range of high cathodic current densities. Based on formal kinetics analysis, an appropriate mechanism for the HER on Ru/Ti2AlC was suggested.
PB  - Elsevier
T2  - Journal of Electroanalytical Chemistry
T1  - Ru layers electrodeposited onto highly stable Ti2AlC substrates as cathodes for hydrogen evolution in sulfuric acid solutions
EP  - 86
SP  - 78
VL  - 766
DO  - 10.1016/j.jelechem.2016.01.038
ER  - 
@article{
author = "Jovic, B M and Jović, Vladimir D. and Lačnjevac, Uroš and Stevanović, Sanja and Kovac, J and Radovic, M and Krstajić, Nedeljko V.",
year = "2016",
abstract = "In this work, the hydrogen evolution reaction (HER) was studied on Ru coated Ti2AlC electrodes in 1.0 mol dm(-3) H2SO4 at 25 degrees C. Ti2AlC was found to be a highly stable substrate in sulfuric acid solutions due to the formation of a passivating oxide layer on the surface, which was confirmed by the X-ray photoelectron spectroscopy (XPS) analysis of as-prepared and anodically treated Ti2AlC samples. Ru films were electrodeposited onto Ti2AlC substrates by cycling the potential of Ti2AlC in the solution containing 0.01 mol dm(-3) RuCl3 + 0.1 mol dm(-3) H2SO4 between -0.5 V and 0.4 V vs. a saturated calomel electrode (SCE) at the sweep rate of 20 mV s(-1). Four Ru/Ti2AlC samples were prepared, obtained at 5, 10, 15 and 20 cycles of Ru electrodeposition. Characterization of samples was performed by scanning electron microscopy (SEM) and cyclic voltammetry (CV), while the thickness of the electrodeposited Ru layers was determined by atomic force microscopy (AFM). It was found that the most compact sample with the thickness of about 0.42 mu m was obtained after 5 cycles. Electrochemical impedance spectroscopy (EIS) and steady-state polarization measurements showed that all Ru/Ti2AlC electrodes were exceptionally active for the HER. A Tafel slope of about -60 mV dec(-1) was observed on all polarization curves in the range of high cathodic current densities. Based on formal kinetics analysis, an appropriate mechanism for the HER on Ru/Ti2AlC was suggested.",
publisher = "Elsevier",
journal = "Journal of Electroanalytical Chemistry",
title = "Ru layers electrodeposited onto highly stable Ti2AlC substrates as cathodes for hydrogen evolution in sulfuric acid solutions",
pages = "86-78",
volume = "766",
doi = "10.1016/j.jelechem.2016.01.038"
}
Jovic, B. M., Jović, V. D., Lačnjevac, U., Stevanović, S., Kovac, J., Radovic, M.,& Krstajić, N. V.. (2016). Ru layers electrodeposited onto highly stable Ti2AlC substrates as cathodes for hydrogen evolution in sulfuric acid solutions. in Journal of Electroanalytical Chemistry
Elsevier., 766, 78-86.
https://doi.org/10.1016/j.jelechem.2016.01.038
Jovic BM, Jović VD, Lačnjevac U, Stevanović S, Kovac J, Radovic M, Krstajić NV. Ru layers electrodeposited onto highly stable Ti2AlC substrates as cathodes for hydrogen evolution in sulfuric acid solutions. in Journal of Electroanalytical Chemistry. 2016;766:78-86.
doi:10.1016/j.jelechem.2016.01.038 .
Jovic, B M, Jović, Vladimir D., Lačnjevac, Uroš, Stevanović, Sanja, Kovac, J, Radovic, M, Krstajić, Nedeljko V., "Ru layers electrodeposited onto highly stable Ti2AlC substrates as cathodes for hydrogen evolution in sulfuric acid solutions" in Journal of Electroanalytical Chemistry, 766 (2016):78-86,
https://doi.org/10.1016/j.jelechem.2016.01.038 . .

DSpace software copyright © 2002-2015  DuraSpace
About TechnoRep | Send Feedback

OpenAIRERCUB
 

 

All of DSpaceInstitutions/communitiesAuthorsTitlesSubjectsThis institutionAuthorsTitlesSubjects

Statistics

View Usage Statistics

DSpace software copyright © 2002-2015  DuraSpace
About TechnoRep | Send Feedback

OpenAIRERCUB