TechnoRep - Faculty of Technology and Metallurgy Repository
University of Belgrade - Faculty of Technology and Metallurgy
    • English
    • Српски
    • Српски (Serbia)
  • English 
    • English
    • Serbian (Cyrillic)
    • Serbian (Latin)
  • Login
View Item 
  •   TechnoRep
  • Tehnološko-metalurški fakultet
  • Radovi istraživača / Researchers’ publications (TMF)
  • View Item
  •   TechnoRep
  • Tehnološko-metalurški fakultet
  • Radovi istraživača / Researchers’ publications (TMF)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Hydrothermal synthesis, morphology, magnetic properties and self-assembly of hierarchical α-Fe2O3 (hematite) mushroom-, cube- and sphere-like superstructures

Authorized Users Only
2018
Authors
Trpkov, Đorđe
Panjan, Matjaž
Kopanja, Lazar
Tadić, Marin
Article (Published version)
,
© 2018 Elsevier B.V.
Metadata
Show full item record
Abstract
We report on glycine-free and glycine-assisted hydrothermal synthesis of microsized superstructures composed of self-assembled hematite nanoparticles. An X-ray powder diffraction measurements of the samples confirm good crystallization of the hematite nanoparticles with hydrothermal reaction time-dependent crystallite sizes in a range from ∼15 nm (45 h) to ∼26 nm (90 h). The FTIR and Raman spectroscopy confirm hematite structure, whereas TEM measurements reveal nanoparticle sub-units (subparticles). The computational analyses of particle shape show that the addition of glycine surfactant in hydrothermal reaction leads to more spherical shape of hematite hierarchical structures and smaller sizes. We found strong coercivity increases (up to ∼3 times) in the samples synthesized in the presence of glycine. The coercivity values from HC = 1305 Oe (mushroom-like shape synthesized by glycine-free hydrothermal reaction) to HC = 3725 Oe (sphere-like shape synthesized by glycine-assisted hydroth...ermal reaction) were obtained at 300 K. These results and their comparison with other described in the literature (e.g. bulk, wires, urchin-like, rods, tubes, plates, star-like, dendrites, platelets, irregular, nanocolumns, spindles, disks hematites, etc.) reveal that the hematite superstructures possess good magnetic properties. We propose that the glycine, oriented subparticles, exchange and dipole-dipole interactions may play an important role in the development of magnetic properties.

Keywords:
hematite (α-Fe2O3) / hydrothermal synthesis / image analysis / iron oxide / magnetic properties / surface effects
Source:
Applied Surface Science, 2018, 457, 427-438
Funding / projects:
  • Magnetic and radionuclide labeled nanostructured materials for medical applications (RS-45015)
  • Functional, Functionalized and Advanced Nanomaterials (RS-45005)
  • Serbian-Slovenian bilateral project (BI-RS/16-17-030)
  • Serbian-Slovenian bilateral project (SK-SRB 2016-0055)

DOI: 10.1016/j.apsusc.2018.06.224

ISSN: 0169-4332

WoS: 000441872300051

Scopus: 2-s2.0-85049354343
[ Google Scholar ]
87
62
URI
http://TechnoRep.tmf.bg.ac.rs/handle/123456789/5874
Collections
  • Radovi istraživača / Researchers’ publications (TMF)
Institution/Community
Tehnološko-metalurški fakultet
TY  - JOUR
AU  - Trpkov, Đorđe
AU  - Panjan, Matjaž
AU  - Kopanja, Lazar
AU  - Tadić, Marin
PY  - 2018
UR  - http://TechnoRep.tmf.bg.ac.rs/handle/123456789/5874
AB  - We report on glycine-free and glycine-assisted hydrothermal synthesis of microsized superstructures composed of self-assembled hematite nanoparticles. An X-ray powder diffraction measurements of the samples confirm good crystallization of the hematite nanoparticles with hydrothermal reaction time-dependent crystallite sizes in a range from ∼15 nm (45 h) to ∼26 nm (90 h). The FTIR and Raman spectroscopy confirm hematite structure, whereas TEM measurements reveal nanoparticle sub-units (subparticles). The computational analyses of particle shape show that the addition of glycine surfactant in hydrothermal reaction leads to more spherical shape of hematite hierarchical structures and smaller sizes. We found strong coercivity increases (up to ∼3 times) in the samples synthesized in the presence of glycine. The coercivity values from HC = 1305 Oe (mushroom-like shape synthesized by glycine-free hydrothermal reaction) to HC = 3725 Oe (sphere-like shape synthesized by glycine-assisted hydrothermal reaction) were obtained at 300 K. These results and their comparison with other described in the literature (e.g. bulk, wires, urchin-like, rods, tubes, plates, star-like, dendrites, platelets, irregular, nanocolumns, spindles, disks hematites, etc.) reveal that the hematite superstructures possess good magnetic properties. We propose that the glycine, oriented subparticles, exchange and dipole-dipole interactions may play an important role in the development of magnetic properties.
T2  - Applied Surface Science
T1  - Hydrothermal synthesis, morphology, magnetic properties and self-assembly of hierarchical α-Fe2O3 (hematite) mushroom-, cube- and sphere-like superstructures
EP  - 438
SP  - 427
VL  - 457
DO  - 10.1016/j.apsusc.2018.06.224
ER  - 
@article{
author = "Trpkov, Đorđe and Panjan, Matjaž and Kopanja, Lazar and Tadić, Marin",
year = "2018",
abstract = "We report on glycine-free and glycine-assisted hydrothermal synthesis of microsized superstructures composed of self-assembled hematite nanoparticles. An X-ray powder diffraction measurements of the samples confirm good crystallization of the hematite nanoparticles with hydrothermal reaction time-dependent crystallite sizes in a range from ∼15 nm (45 h) to ∼26 nm (90 h). The FTIR and Raman spectroscopy confirm hematite structure, whereas TEM measurements reveal nanoparticle sub-units (subparticles). The computational analyses of particle shape show that the addition of glycine surfactant in hydrothermal reaction leads to more spherical shape of hematite hierarchical structures and smaller sizes. We found strong coercivity increases (up to ∼3 times) in the samples synthesized in the presence of glycine. The coercivity values from HC = 1305 Oe (mushroom-like shape synthesized by glycine-free hydrothermal reaction) to HC = 3725 Oe (sphere-like shape synthesized by glycine-assisted hydrothermal reaction) were obtained at 300 K. These results and their comparison with other described in the literature (e.g. bulk, wires, urchin-like, rods, tubes, plates, star-like, dendrites, platelets, irregular, nanocolumns, spindles, disks hematites, etc.) reveal that the hematite superstructures possess good magnetic properties. We propose that the glycine, oriented subparticles, exchange and dipole-dipole interactions may play an important role in the development of magnetic properties.",
journal = "Applied Surface Science",
title = "Hydrothermal synthesis, morphology, magnetic properties and self-assembly of hierarchical α-Fe2O3 (hematite) mushroom-, cube- and sphere-like superstructures",
pages = "438-427",
volume = "457",
doi = "10.1016/j.apsusc.2018.06.224"
}
Trpkov, Đ., Panjan, M., Kopanja, L.,& Tadić, M.. (2018). Hydrothermal synthesis, morphology, magnetic properties and self-assembly of hierarchical α-Fe2O3 (hematite) mushroom-, cube- and sphere-like superstructures. in Applied Surface Science, 457, 427-438.
https://doi.org/10.1016/j.apsusc.2018.06.224
Trpkov Đ, Panjan M, Kopanja L, Tadić M. Hydrothermal synthesis, morphology, magnetic properties and self-assembly of hierarchical α-Fe2O3 (hematite) mushroom-, cube- and sphere-like superstructures. in Applied Surface Science. 2018;457:427-438.
doi:10.1016/j.apsusc.2018.06.224 .
Trpkov, Đorđe, Panjan, Matjaž, Kopanja, Lazar, Tadić, Marin, "Hydrothermal synthesis, morphology, magnetic properties and self-assembly of hierarchical α-Fe2O3 (hematite) mushroom-, cube- and sphere-like superstructures" in Applied Surface Science, 457 (2018):427-438,
https://doi.org/10.1016/j.apsusc.2018.06.224 . .

DSpace software copyright © 2002-2015  DuraSpace
About TechnoRep | Send Feedback

OpenAIRERCUB
 

 

All of DSpaceInstitutions/communitiesAuthorsTitlesSubjectsThis institutionAuthorsTitlesSubjects

Statistics

View Usage Statistics

DSpace software copyright © 2002-2015  DuraSpace
About TechnoRep | Send Feedback

OpenAIRERCUB