TechnoRep - Faculty of Technology and Metallurgy Repository
University of Belgrade - Faculty of Technology and Metallurgy
    • English
    • Српски
    • Српски (Serbia)
  • English 
    • English
    • Serbian (Cyrillic)
    • Serbian (Latin)
  • Login
View Item 
  •   TechnoRep
  • Tehnološko-metalurški fakultet
  • Radovi istraživača / Researchers’ publications (TMF)
  • View Item
  •   TechnoRep
  • Tehnološko-metalurški fakultet
  • Radovi istraživača / Researchers’ publications (TMF)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Leaching kinetics of Cs+ and Co2+ under dynamic conditions

Thumbnail
2019
1451-39941900028D.pdf (292.3Kb)
Authors
Dimović, Slavko
Nikezić, Dušan P.
Šljivić-Ivanović, Marija Z.
Jelić, Ivana V.
Stanić, Vojislav
Radenković, Mirjana
Lončar, Boris B.
Article (Published version)
Metadata
Show full item record
Abstract
The possibility of retaining Cs+ and Co2+ bound by immobilization processes in the cement matrix is defined as the subject of its investigation: the cement matrix formulation, the water/ cement ratio, the amount of waste, and the porosity of such a structure. Implementing the standard leaching method by Hespe the possibility of comparing different authors’ results was achieved. Diffusion and semi-empirical model were used to investigate the transport phenomenon in order to predict the leaching level for a long period of time. Leaching of Co2+ and Cs+ ions under dynamic conditions immobilized in the cement matrix dynamic conditions decreases with the increase of the sludge content, regarding porosity increase. The effects of the diffusion and surface washing are equalized, and the contribution ofthe matrix dissolution to the Cs + and Co2+ transport in the cement porous media increases, on average, for one order of magnitude. The semi-empirical model gives a better approximation for Co2+... and Cs+ leaching process for the duration ofthe experiment while both models significantly approximate leaching results in dynamic conditions. © 2019, Vinca Inst Nuclear Sci. All rights reserved.

Keywords:
radioactive waste / cement matrix / leaching / mathematical modeling
Source:
Nuclear Technology and Radiation Protection, 2019, 34, 3, 243-248
Funding / projects:
  • Advanced technologies for monitoring and environmental protection from chemical pollutants and radiation burden (RS-43009)

DOI: 10.2298/NTRP190506028D

ISSN: 1451-3994

WoS: 000496944600005

Scopus: 2-s2.0-85075199249
[ Google Scholar ]
2
3
URI
http://TechnoRep.tmf.bg.ac.rs/handle/123456789/5893
Collections
  • Radovi istraživača / Researchers’ publications (TMF)
Institution/Community
Tehnološko-metalurški fakultet
TY  - JOUR
AU  - Dimović, Slavko
AU  - Nikezić, Dušan P.
AU  - Šljivić-Ivanović, Marija Z.
AU  - Jelić, Ivana V.
AU  - Stanić, Vojislav
AU  - Radenković, Mirjana
AU  - Lončar, Boris B.
PY  - 2019
UR  - http://TechnoRep.tmf.bg.ac.rs/handle/123456789/5893
AB  - The possibility of retaining Cs+ and Co2+ bound by immobilization processes in the cement matrix is defined as the subject of its investigation: the cement matrix formulation, the water/ cement ratio, the amount of waste, and the porosity of such a structure. Implementing the standard leaching method by Hespe the possibility of comparing different authors’ results was achieved. Diffusion and semi-empirical model were used to investigate the transport phenomenon in order to predict the leaching level for a long period of time. Leaching of Co2+ and Cs+ ions under dynamic conditions immobilized in the cement matrix dynamic conditions decreases with the increase of the sludge content, regarding porosity increase. The effects of the diffusion and surface washing are equalized, and the contribution ofthe matrix dissolution to the Cs + and Co2+ transport in the cement porous media increases, on average, for one order of magnitude. The semi-empirical model gives a better approximation for Co2+ and Cs+ leaching process for the duration ofthe experiment while both models significantly approximate leaching results in dynamic conditions. © 2019, Vinca Inst Nuclear Sci. All rights reserved.
T2  - Nuclear Technology and Radiation Protection
T1  - Leaching kinetics of Cs+ and Co2+ under dynamic conditions
EP  - 248
IS  - 3
SP  - 243
VL  - 34
DO  - 10.2298/NTRP190506028D
ER  - 
@article{
author = "Dimović, Slavko and Nikezić, Dušan P. and Šljivić-Ivanović, Marija Z. and Jelić, Ivana V. and Stanić, Vojislav and Radenković, Mirjana and Lončar, Boris B.",
year = "2019",
abstract = "The possibility of retaining Cs+ and Co2+ bound by immobilization processes in the cement matrix is defined as the subject of its investigation: the cement matrix formulation, the water/ cement ratio, the amount of waste, and the porosity of such a structure. Implementing the standard leaching method by Hespe the possibility of comparing different authors’ results was achieved. Diffusion and semi-empirical model were used to investigate the transport phenomenon in order to predict the leaching level for a long period of time. Leaching of Co2+ and Cs+ ions under dynamic conditions immobilized in the cement matrix dynamic conditions decreases with the increase of the sludge content, regarding porosity increase. The effects of the diffusion and surface washing are equalized, and the contribution ofthe matrix dissolution to the Cs + and Co2+ transport in the cement porous media increases, on average, for one order of magnitude. The semi-empirical model gives a better approximation for Co2+ and Cs+ leaching process for the duration ofthe experiment while both models significantly approximate leaching results in dynamic conditions. © 2019, Vinca Inst Nuclear Sci. All rights reserved.",
journal = "Nuclear Technology and Radiation Protection",
title = "Leaching kinetics of Cs+ and Co2+ under dynamic conditions",
pages = "248-243",
number = "3",
volume = "34",
doi = "10.2298/NTRP190506028D"
}
Dimović, S., Nikezić, D. P., Šljivić-Ivanović, M. Z., Jelić, I. V., Stanić, V., Radenković, M.,& Lončar, B. B.. (2019). Leaching kinetics of Cs+ and Co2+ under dynamic conditions. in Nuclear Technology and Radiation Protection, 34(3), 243-248.
https://doi.org/10.2298/NTRP190506028D
Dimović S, Nikezić DP, Šljivić-Ivanović MZ, Jelić IV, Stanić V, Radenković M, Lončar BB. Leaching kinetics of Cs+ and Co2+ under dynamic conditions. in Nuclear Technology and Radiation Protection. 2019;34(3):243-248.
doi:10.2298/NTRP190506028D .
Dimović, Slavko, Nikezić, Dušan P., Šljivić-Ivanović, Marija Z., Jelić, Ivana V., Stanić, Vojislav, Radenković, Mirjana, Lončar, Boris B., "Leaching kinetics of Cs+ and Co2+ under dynamic conditions" in Nuclear Technology and Radiation Protection, 34, no. 3 (2019):243-248,
https://doi.org/10.2298/NTRP190506028D . .

DSpace software copyright © 2002-2015  DuraSpace
About TechnoRep | Send Feedback

OpenAIRERCUB
 

 

All of DSpaceInstitutions/communitiesAuthorsTitlesSubjectsThis institutionAuthorsTitlesSubjects

Statistics

View Usage Statistics

DSpace software copyright © 2002-2015  DuraSpace
About TechnoRep | Send Feedback

OpenAIRERCUB